Answer
Verified
398.4k+ views
Hint: Students if we observe the problem, it is somewhat like \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]. This is the hint to solve the question. Instead of solving the original question we will consider the terms as a and b. and then solve it using the identity. And the answer of the identity will be replaced by the considered values.
Complete step by step solution:
Given that,
\[{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4\]
Now if we compare it is same as \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]
We know that,
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\].
So let a=\[\dfrac{a}{{2b}}\] and b=\[\dfrac{{2b}}{a}\] . now we will expand the bracket or equation we substituted.
\[ = {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]
Taking the expansion, we get,
\[ = {a^2} + 2ab + {b^2} - \left( {{a^2} - 2ab + {b^2}} \right) - 4\]
Multiplying the terms by the minus sign we get,
\[ = {a^2} + 2ab + {b^2} - {a^2} + 2ab - {b^2} - 4\]
Now cancel the same terms but with different signs,
\[ = 2ab + 2ab - 4\]
On adding we get,
\[ = 4ab - 4\]
Now we will resubstitute the values of a and b,
\[ = 4 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} - 4\]
Cancelling the same terms in the product,
\[ = 4 - 4\]
When a number is subtracted from the same number the answer is zero.
\[ = 0\]
Therefore, \[{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 = 0\]. So, option (D) is the correct answer.
Note:
Note that we can also expand the brackets directly but that can be tedious work. So we used the algebraic identities of expansion.
Second point that is to be noted is applicable in general mathematics as, in addition and subtraction we cancel the terms if they are of same value but different signs and the answer is zero; but in multiplication we cancel them when they are same but are present in numerator and denominator patterns regardless of the pattern and the answer is 1 for that cancellation.
Complete step by step solution:
Given that,
\[{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4\]
Now if we compare it is same as \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]
We know that,
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\].
So let a=\[\dfrac{a}{{2b}}\] and b=\[\dfrac{{2b}}{a}\] . now we will expand the bracket or equation we substituted.
\[ = {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]
Taking the expansion, we get,
\[ = {a^2} + 2ab + {b^2} - \left( {{a^2} - 2ab + {b^2}} \right) - 4\]
Multiplying the terms by the minus sign we get,
\[ = {a^2} + 2ab + {b^2} - {a^2} + 2ab - {b^2} - 4\]
Now cancel the same terms but with different signs,
\[ = 2ab + 2ab - 4\]
On adding we get,
\[ = 4ab - 4\]
Now we will resubstitute the values of a and b,
\[ = 4 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} - 4\]
Cancelling the same terms in the product,
\[ = 4 - 4\]
When a number is subtracted from the same number the answer is zero.
\[ = 0\]
Therefore, \[{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 = 0\]. So, option (D) is the correct answer.
Note:
Note that we can also expand the brackets directly but that can be tedious work. So we used the algebraic identities of expansion.
Second point that is to be noted is applicable in general mathematics as, in addition and subtraction we cancel the terms if they are of same value but different signs and the answer is zero; but in multiplication we cancel them when they are same but are present in numerator and denominator patterns regardless of the pattern and the answer is 1 for that cancellation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE