Answer
Verified
431.4k+ views
Hint: For evaluating the expression given in the above question, we need to write it in the form of an equation. For this we can let it equal to some variable, say \[y\], so that we can write the equation \[y={{\log }_{14}}\left( 14 \right)\]. Then we have to take the anti logarithm on both the sides. The antilogarithm function is equivalent to raising the given base of the logarithm function to the argument. Then on comparing both sides of the equation obtained, we can determine the required value of the expression.
Complete step by step answer:
Let us write the expression given in the question as
$\Rightarrow y={{\log }_{14}}\left( 14 \right)$
Now, the base of the given logarithm function is equal to $14$. So on taking the anti logarithm on both sides of the above equation to get
$\Rightarrow {{14}^{y}}=14$
We know that a number raised to the power of one is equal to the number itself. Therefore we can write $14={{14}^{1}}$ on the RHS of the above equation to get
$\Rightarrow {{14}^{y}}={{14}^{1}}$
Since the bases on both sides are equal to $14$, therefore on comparing the exponents of both sides of the above equation we finally get
$\Rightarrow y=1$
Hence, the given expression ${{\log }_{14}}\left( 14 \right)$ is equal to $1$.
Note: Do not forget to check the value of the base which is mentioned as the subscript to the logarithm function. Generally, when there is no base mentioned, we take it to be equal to $10$. But in this case it is mentioned to be equal to $14$. Also, we can also use the property of the logarithm to directly evaluate the given expression, which is given as ${{\log }_{a}}\left( a \right)=1$.
Complete step by step answer:
Let us write the expression given in the question as
$\Rightarrow y={{\log }_{14}}\left( 14 \right)$
Now, the base of the given logarithm function is equal to $14$. So on taking the anti logarithm on both sides of the above equation to get
$\Rightarrow {{14}^{y}}=14$
We know that a number raised to the power of one is equal to the number itself. Therefore we can write $14={{14}^{1}}$ on the RHS of the above equation to get
$\Rightarrow {{14}^{y}}={{14}^{1}}$
Since the bases on both sides are equal to $14$, therefore on comparing the exponents of both sides of the above equation we finally get
$\Rightarrow y=1$
Hence, the given expression ${{\log }_{14}}\left( 14 \right)$ is equal to $1$.
Note: Do not forget to check the value of the base which is mentioned as the subscript to the logarithm function. Generally, when there is no base mentioned, we take it to be equal to $10$. But in this case it is mentioned to be equal to $14$. Also, we can also use the property of the logarithm to directly evaluate the given expression, which is given as ${{\log }_{a}}\left( a \right)=1$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE