Answer
Verified
429.9k+ views
Hint: The logarithm is used to convert a large or very small number into the understandable domain. For the theorem to work the usual conditions of logarithm will have to follow. We also need to remember that for logarithm function there has to be a domain constraint. The range in the usual case is the whole real line.
Complete step-by-step solution:
Let an arbitrary logarithmic function be $A={{\log }_{b}}a$. The conditions for the expression to be logical is $a,b>0;b\ne 1$.
We have $\log {{x}^{a}}=a\log x$. The power value of $a$ goes as a multiplication with $\log x$.
We also have the identity for logarithm where ${{\log }_{y}}x=\dfrac{{{\log }_{m}}x}{{{\log }_{m}}y}$.
The new base can be anything but the condition is that the base for both denominator and the numerator have to be the same.
Using the formula, we can break the logarithm ${{\log }_{3}}7$ taking the base as exponent $e$.
We have $\ln a={{\log }_{e}}a$.
Therefore, ${{\log }_{3}}7=\dfrac{{{\log }_{e}}7}{{{\log }_{e}}3}=\dfrac{\ln 7}{\ln 3}$.
Now we can put these values from the calculator to find the value for ${{\log }_{3}}7$.
We have $\ln 3=1.1,\ln 7=1.946$. This gives ${{\log }_{3}}7=\dfrac{\ln 7}{\ln 3}=\dfrac{1.946}{1.1}=1.098$.
The value of ${{\log }_{3}}7$ is $1.098$.
Note: There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Complete step-by-step solution:
Let an arbitrary logarithmic function be $A={{\log }_{b}}a$. The conditions for the expression to be logical is $a,b>0;b\ne 1$.
We have $\log {{x}^{a}}=a\log x$. The power value of $a$ goes as a multiplication with $\log x$.
We also have the identity for logarithm where ${{\log }_{y}}x=\dfrac{{{\log }_{m}}x}{{{\log }_{m}}y}$.
The new base can be anything but the condition is that the base for both denominator and the numerator have to be the same.
Using the formula, we can break the logarithm ${{\log }_{3}}7$ taking the base as exponent $e$.
We have $\ln a={{\log }_{e}}a$.
Therefore, ${{\log }_{3}}7=\dfrac{{{\log }_{e}}7}{{{\log }_{e}}3}=\dfrac{\ln 7}{\ln 3}$.
Now we can put these values from the calculator to find the value for ${{\log }_{3}}7$.
We have $\ln 3=1.1,\ln 7=1.946$. This gives ${{\log }_{3}}7=\dfrac{\ln 7}{\ln 3}=\dfrac{1.946}{1.1}=1.098$.
The value of ${{\log }_{3}}7$ is $1.098$.
Note: There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE