Answer
Verified
428.4k+ views
Hint: First of all convert the argument of the given logarithmic expression into exponential form by using the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\]. Now, use the identity: - \[\log {{a}^{m}}=m\log a\] for the simplification of the expression. Now, convert the base of the logarithmic into exponential form by writing \[4={{2}^{2}}\] and use the identity: - \[{{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m\] for further simplification. Finally, use the formula: - \[{{\log }_{n}}n=1\] to get the answer. Here, n > 0 and \[n\ne 1\].
Complete answer:
Here, we have been provided with the logarithmic expression \[{{\log }_{4}}\left( \dfrac{1}{2} \right)\] and we have been asked to evaluate it. That means we have to find its value.
Now, let us assume the value of the given expression is ‘E’. So, we have,
\[\Rightarrow E={{\log }_{4}}\left( \dfrac{1}{2} \right)\]
Here, we have the argument of log equal to \[\dfrac{1}{2}\], so writing this fraction in exponential form using the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\], we have,
\[\Rightarrow E={{\log }_{4}}\left( {{2}^{-1}} \right)\]
Using the formula: - \[\log {{a}^{m}}=m\log a\], we get,
\[\begin{align}
& \Rightarrow E=\left( -1 \right)\times {{\log }_{4}}2 \\
& \Rightarrow E=-{{\log }_{4}}2 \\
\end{align}\]
Now, as we can see that the base of this logarithmic expression is which can be converted into exponential form by using the prime factorization. So, we can write,
\[\Rightarrow 4=2\times 2\]
This can be written as: -
\[\Rightarrow 4={{2}^{2}}\]
Therefore, the expression becomes,
\[\Rightarrow E=-{{\log }_{{{2}^{2}}}}2\]
Using the formula: - \[{{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m\], we get,
\[\Rightarrow E=\dfrac{-1}{2}{{\log }_{2}}2\]
As we can see that the argument and base of the logarithm has become equal so we can use the formula: - \[{{\log }_{n}}n=1\] for n > 0 and \[n\ne 1\]. Therefore, the expression ‘E’ can be simplified as: -
\[\begin{align}
& \Rightarrow E=\left( \dfrac{-1}{2} \right)\times 1 \\
& \Rightarrow E=\left( \dfrac{-1}{2} \right) \\
\end{align}\]
Hence, the value of the given logarithmic expression is \[\left( \dfrac{-1}{2} \right)\].
Note:
You must remember the basic formulas of logarithm like: - \[\log m+\log n=\log \left( mn \right)\], \[\log m-\log n=\log \left( \dfrac{m}{n} \right)\], \[\log {{m}^{n}}=n\log m\], \[{{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m\] etc. You may note the exponentiation is the reverse process of logarithm so we can also solve this question by converting the logarithmic form of equation into exponential form by using the formula: - if \[x={{\log }_{a}}m\] then \[m={{a}^{x}}\]. In the next step we will write: - \[{{4}^{x}}=\dfrac{1}{2}\], which can be further simplified as \[{{4}^{x}}={{2}^{-1}}\]. Now, we will compare \[{{2}^{2x}}={{2}^{-1}}\] and then equate the exponents (-1) and (2x) to solve for the value of x.
Complete answer:
Here, we have been provided with the logarithmic expression \[{{\log }_{4}}\left( \dfrac{1}{2} \right)\] and we have been asked to evaluate it. That means we have to find its value.
Now, let us assume the value of the given expression is ‘E’. So, we have,
\[\Rightarrow E={{\log }_{4}}\left( \dfrac{1}{2} \right)\]
Here, we have the argument of log equal to \[\dfrac{1}{2}\], so writing this fraction in exponential form using the formula: - \[\dfrac{1}{{{a}^{m}}}={{a}^{-m}}\], we have,
\[\Rightarrow E={{\log }_{4}}\left( {{2}^{-1}} \right)\]
Using the formula: - \[\log {{a}^{m}}=m\log a\], we get,
\[\begin{align}
& \Rightarrow E=\left( -1 \right)\times {{\log }_{4}}2 \\
& \Rightarrow E=-{{\log }_{4}}2 \\
\end{align}\]
Now, as we can see that the base of this logarithmic expression is which can be converted into exponential form by using the prime factorization. So, we can write,
\[\Rightarrow 4=2\times 2\]
This can be written as: -
\[\Rightarrow 4={{2}^{2}}\]
Therefore, the expression becomes,
\[\Rightarrow E=-{{\log }_{{{2}^{2}}}}2\]
Using the formula: - \[{{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m\], we get,
\[\Rightarrow E=\dfrac{-1}{2}{{\log }_{2}}2\]
As we can see that the argument and base of the logarithm has become equal so we can use the formula: - \[{{\log }_{n}}n=1\] for n > 0 and \[n\ne 1\]. Therefore, the expression ‘E’ can be simplified as: -
\[\begin{align}
& \Rightarrow E=\left( \dfrac{-1}{2} \right)\times 1 \\
& \Rightarrow E=\left( \dfrac{-1}{2} \right) \\
\end{align}\]
Hence, the value of the given logarithmic expression is \[\left( \dfrac{-1}{2} \right)\].
Note:
You must remember the basic formulas of logarithm like: - \[\log m+\log n=\log \left( mn \right)\], \[\log m-\log n=\log \left( \dfrac{m}{n} \right)\], \[\log {{m}^{n}}=n\log m\], \[{{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m\] etc. You may note the exponentiation is the reverse process of logarithm so we can also solve this question by converting the logarithmic form of equation into exponential form by using the formula: - if \[x={{\log }_{a}}m\] then \[m={{a}^{x}}\]. In the next step we will write: - \[{{4}^{x}}=\dfrac{1}{2}\], which can be further simplified as \[{{4}^{x}}={{2}^{-1}}\]. Now, we will compare \[{{2}^{2x}}={{2}^{-1}}\] and then equate the exponents (-1) and (2x) to solve for the value of x.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE