
How do you evaluate $\sin \left( 2\arctan \left( \sqrt{2} \right) \right)?$
Answer
534.6k+ views
Hint: We use trigonometric and inverse trigonometric identities to evaluate $\sin \left( 2\arctan \left( \sqrt{2} \right) \right).$ Let us recall the identity: $\sin \left( \arctan \left( x \right) \right)=\dfrac{x}{\sqrt{1+{{x}^{2}}}}.$ Also remember the identity: $\cos \left( \arctan \left( x \right) \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}.$ The basic trigonometric identity $\tan x=\dfrac{\sin x}{\cos x}$ will be useful while evaluating the given trigonometric function. We may use the trigonometric identity, $\sin 2x=2\sin x\cos x.$
Complete step by step solution:
Consider the given trigonometric function $\sin \left( 2\arctan \left( \sqrt{2} \right) \right).$
We are going to start with the function $\arctan \left( \sqrt{2} \right).$
Suppose that $x=\arctan \left( \sqrt{2} \right).$
On the basis of our supposition, we deduce that $\tan x=\sqrt{2}.$
Therefore, what we have to find is the value or values of $x$ for which $\tan x=\sqrt{2}$ is true.
We know the trigonometric identity that connects sine, cosine and tangent as $\tan x=\dfrac{\sin x}{\cos x}.$
From this we will get the following,
$\Rightarrow \dfrac{\sin x}{\cos x}=\sqrt{2}.$
That is, we have to find the value or values of $x$ for which the quotient $\dfrac{\sin x}{\cos x}$ is equal to $\sqrt{2}.$
Also, we should keep the fact that the sign of both the trigonometric functions sine and cosine should be the same. Because, the value of the tangent function is positive.
Now, we can say that $\tan x=\sqrt{2}$ implies,
either $\sin x=\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=\dfrac{1}{\sqrt{3}}$
or $\sin x=-\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=-\dfrac{1}{\sqrt{3}}.$
Now let us go back to the given trigonometric function.
So, we will have $\sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\sin \left( 2x \right),$ we have, earlier, mentioned that $x=\arctan \left( \sqrt{2} \right).$
Now we use another trigonometric identity to evaluate the above obtained equation.
That is, $\sin 2x=2\sin x\cos x.$
We are going to apply this identity to our problem to get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\sin 2x=2\sin x\cos x.\]
Let us substitute the values of the sine function and the cosine function.
We get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{\sqrt{3}}\dfrac{1}{\sqrt{3}}.\]
Or,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{-\sqrt{2}}{\sqrt{3}}\dfrac{-1}{\sqrt{3}}.\]
In both the cases, we get
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}.1}{\sqrt{3}.\sqrt{3}}.\]
Hence, we get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{3}.\]
Hence, the simplified form of \[\sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{3}.\]
Note: If we know $\tan x=\sqrt{2}$ when,
$\sin x=\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=\dfrac{1}{\sqrt{3}}$
or $\sin x=-\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=-\dfrac{1}{\sqrt{3}},$
then, we can directly find the value of the given function using the identity given below:
$2\arctan x=\arcsin \left( \dfrac{2x}{1+{{x}^{2}}} \right),\,\,\,\left| x \right|\le 1.$
Take $x=\sqrt{2},$ and then we will get,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{1+{{\left( \sqrt{2} \right)}^{2}}} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
This will become,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{1+2} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Thus, we get,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{3} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Hence, we get
$\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\left( \dfrac{2\sqrt{2}}{3} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Complete step by step solution:
Consider the given trigonometric function $\sin \left( 2\arctan \left( \sqrt{2} \right) \right).$
We are going to start with the function $\arctan \left( \sqrt{2} \right).$
Suppose that $x=\arctan \left( \sqrt{2} \right).$
On the basis of our supposition, we deduce that $\tan x=\sqrt{2}.$
Therefore, what we have to find is the value or values of $x$ for which $\tan x=\sqrt{2}$ is true.
We know the trigonometric identity that connects sine, cosine and tangent as $\tan x=\dfrac{\sin x}{\cos x}.$
From this we will get the following,
$\Rightarrow \dfrac{\sin x}{\cos x}=\sqrt{2}.$
That is, we have to find the value or values of $x$ for which the quotient $\dfrac{\sin x}{\cos x}$ is equal to $\sqrt{2}.$
Also, we should keep the fact that the sign of both the trigonometric functions sine and cosine should be the same. Because, the value of the tangent function is positive.
Now, we can say that $\tan x=\sqrt{2}$ implies,
either $\sin x=\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=\dfrac{1}{\sqrt{3}}$
or $\sin x=-\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=-\dfrac{1}{\sqrt{3}}.$
Now let us go back to the given trigonometric function.
So, we will have $\sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\sin \left( 2x \right),$ we have, earlier, mentioned that $x=\arctan \left( \sqrt{2} \right).$
Now we use another trigonometric identity to evaluate the above obtained equation.
That is, $\sin 2x=2\sin x\cos x.$
We are going to apply this identity to our problem to get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\sin 2x=2\sin x\cos x.\]
Let us substitute the values of the sine function and the cosine function.
We get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{\sqrt{3}}\dfrac{1}{\sqrt{3}}.\]
Or,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{-\sqrt{2}}{\sqrt{3}}\dfrac{-1}{\sqrt{3}}.\]
In both the cases, we get
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}.1}{\sqrt{3}.\sqrt{3}}.\]
Hence, we get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{3}.\]
Hence, the simplified form of \[\sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{3}.\]
Note: If we know $\tan x=\sqrt{2}$ when,
$\sin x=\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=\dfrac{1}{\sqrt{3}}$
or $\sin x=-\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=-\dfrac{1}{\sqrt{3}},$
then, we can directly find the value of the given function using the identity given below:
$2\arctan x=\arcsin \left( \dfrac{2x}{1+{{x}^{2}}} \right),\,\,\,\left| x \right|\le 1.$
Take $x=\sqrt{2},$ and then we will get,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{1+{{\left( \sqrt{2} \right)}^{2}}} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
This will become,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{1+2} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Thus, we get,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{3} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Hence, we get
$\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\left( \dfrac{2\sqrt{2}}{3} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

