
How do you evaluate $\sin \left( 2\arctan \left( \sqrt{2} \right) \right)?$
Answer
548.1k+ views
Hint: We use trigonometric and inverse trigonometric identities to evaluate $\sin \left( 2\arctan \left( \sqrt{2} \right) \right).$ Let us recall the identity: $\sin \left( \arctan \left( x \right) \right)=\dfrac{x}{\sqrt{1+{{x}^{2}}}}.$ Also remember the identity: $\cos \left( \arctan \left( x \right) \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}.$ The basic trigonometric identity $\tan x=\dfrac{\sin x}{\cos x}$ will be useful while evaluating the given trigonometric function. We may use the trigonometric identity, $\sin 2x=2\sin x\cos x.$
Complete step by step solution:
Consider the given trigonometric function $\sin \left( 2\arctan \left( \sqrt{2} \right) \right).$
We are going to start with the function $\arctan \left( \sqrt{2} \right).$
Suppose that $x=\arctan \left( \sqrt{2} \right).$
On the basis of our supposition, we deduce that $\tan x=\sqrt{2}.$
Therefore, what we have to find is the value or values of $x$ for which $\tan x=\sqrt{2}$ is true.
We know the trigonometric identity that connects sine, cosine and tangent as $\tan x=\dfrac{\sin x}{\cos x}.$
From this we will get the following,
$\Rightarrow \dfrac{\sin x}{\cos x}=\sqrt{2}.$
That is, we have to find the value or values of $x$ for which the quotient $\dfrac{\sin x}{\cos x}$ is equal to $\sqrt{2}.$
Also, we should keep the fact that the sign of both the trigonometric functions sine and cosine should be the same. Because, the value of the tangent function is positive.
Now, we can say that $\tan x=\sqrt{2}$ implies,
either $\sin x=\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=\dfrac{1}{\sqrt{3}}$
or $\sin x=-\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=-\dfrac{1}{\sqrt{3}}.$
Now let us go back to the given trigonometric function.
So, we will have $\sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\sin \left( 2x \right),$ we have, earlier, mentioned that $x=\arctan \left( \sqrt{2} \right).$
Now we use another trigonometric identity to evaluate the above obtained equation.
That is, $\sin 2x=2\sin x\cos x.$
We are going to apply this identity to our problem to get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\sin 2x=2\sin x\cos x.\]
Let us substitute the values of the sine function and the cosine function.
We get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{\sqrt{3}}\dfrac{1}{\sqrt{3}}.\]
Or,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{-\sqrt{2}}{\sqrt{3}}\dfrac{-1}{\sqrt{3}}.\]
In both the cases, we get
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}.1}{\sqrt{3}.\sqrt{3}}.\]
Hence, we get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{3}.\]
Hence, the simplified form of \[\sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{3}.\]
Note: If we know $\tan x=\sqrt{2}$ when,
$\sin x=\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=\dfrac{1}{\sqrt{3}}$
or $\sin x=-\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=-\dfrac{1}{\sqrt{3}},$
then, we can directly find the value of the given function using the identity given below:
$2\arctan x=\arcsin \left( \dfrac{2x}{1+{{x}^{2}}} \right),\,\,\,\left| x \right|\le 1.$
Take $x=\sqrt{2},$ and then we will get,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{1+{{\left( \sqrt{2} \right)}^{2}}} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
This will become,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{1+2} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Thus, we get,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{3} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Hence, we get
$\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\left( \dfrac{2\sqrt{2}}{3} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Complete step by step solution:
Consider the given trigonometric function $\sin \left( 2\arctan \left( \sqrt{2} \right) \right).$
We are going to start with the function $\arctan \left( \sqrt{2} \right).$
Suppose that $x=\arctan \left( \sqrt{2} \right).$
On the basis of our supposition, we deduce that $\tan x=\sqrt{2}.$
Therefore, what we have to find is the value or values of $x$ for which $\tan x=\sqrt{2}$ is true.
We know the trigonometric identity that connects sine, cosine and tangent as $\tan x=\dfrac{\sin x}{\cos x}.$
From this we will get the following,
$\Rightarrow \dfrac{\sin x}{\cos x}=\sqrt{2}.$
That is, we have to find the value or values of $x$ for which the quotient $\dfrac{\sin x}{\cos x}$ is equal to $\sqrt{2}.$
Also, we should keep the fact that the sign of both the trigonometric functions sine and cosine should be the same. Because, the value of the tangent function is positive.
Now, we can say that $\tan x=\sqrt{2}$ implies,
either $\sin x=\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=\dfrac{1}{\sqrt{3}}$
or $\sin x=-\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=-\dfrac{1}{\sqrt{3}}.$
Now let us go back to the given trigonometric function.
So, we will have $\sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\sin \left( 2x \right),$ we have, earlier, mentioned that $x=\arctan \left( \sqrt{2} \right).$
Now we use another trigonometric identity to evaluate the above obtained equation.
That is, $\sin 2x=2\sin x\cos x.$
We are going to apply this identity to our problem to get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\sin 2x=2\sin x\cos x.\]
Let us substitute the values of the sine function and the cosine function.
We get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{\sqrt{3}}\dfrac{1}{\sqrt{3}}.\]
Or,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{-\sqrt{2}}{\sqrt{3}}\dfrac{-1}{\sqrt{3}}.\]
In both the cases, we get
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}.1}{\sqrt{3}.\sqrt{3}}.\]
Hence, we get,
\[\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{3}.\]
Hence, the simplified form of \[\sin \left( 2\arctan \left( \sqrt{2} \right) \right)=2\dfrac{\sqrt{2}}{3}.\]
Note: If we know $\tan x=\sqrt{2}$ when,
$\sin x=\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=\dfrac{1}{\sqrt{3}}$
or $\sin x=-\dfrac{\sqrt{2}}{\sqrt{3}}$ and $\cos x=-\dfrac{1}{\sqrt{3}},$
then, we can directly find the value of the given function using the identity given below:
$2\arctan x=\arcsin \left( \dfrac{2x}{1+{{x}^{2}}} \right),\,\,\,\left| x \right|\le 1.$
Take $x=\sqrt{2},$ and then we will get,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{1+{{\left( \sqrt{2} \right)}^{2}}} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
This will become,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{1+2} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Thus, we get,
$\Rightarrow 2\arctan \sqrt{2}=\arcsin \left( \dfrac{2\sqrt{2}}{3} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Hence, we get
$\Rightarrow \sin \left( 2\arctan \left( \sqrt{2} \right) \right)=\left( \dfrac{2\sqrt{2}}{3} \right),\,\,\,\left| \sqrt{2} \right|\le 1.$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

