
Evaluate ?
Answer
434.1k+ views
Hint: Here in this question, we have to find the exact value of a given trigonometric function by using the sine sum or difference identity. First rewrite the given angle in the form of addition or difference, then the standard trigonometric formula sine sum i.e., or sine difference i.e., identity defined as and using one of these we get the required value.
Complete step-by-step answer:
To evaluate the given question by using a formula of cosine addition defined as the sine addition formula calculates the sine of an angle that is either the sum or difference of two other angles. It arises from the law of sines and the distance formula. By using the sine addition formula, the cosine of both the sum and difference of two angles can be found with the two angles' sines and cosines.
Consider the given function
-------(1)
The angle can be written as , then
Equation (1) becomes
------(2)
Apply the trigonometric cosine identity of difference .
Here and
Substitute A and B in formula then
By using specified cosine and sine angle i.e., , , and
On, Substituting the values, we have
On simplification we get
Hence, the exact functional value of .
So, the correct answer is “ ”.
Note: Simply this can also be solve by using a ASTC rule i.e.,
By using the ASTC rule of trigonometry, the angle or angle lies in the second quadrant. sine function is positive here, hence the angle must in positive, then
While solving this type of question, we must know about the ASTC rule.
And also know the cosine sum or difference identity, for this we have a standard formula. To find the value for the trigonometry function we need the table of trigonometry ratios for standard angles.
Complete step-by-step answer:
To evaluate the given question by using a formula of cosine addition defined as the sine addition formula calculates the sine of an angle that is either the sum or difference of two other angles. It arises from the law of sines and the distance formula. By using the sine addition formula, the cosine of both the sum and difference of two angles can be found with the two angles' sines and cosines.
Consider the given function
The angle
Equation (1) becomes
Apply the trigonometric cosine identity of difference
Here
Substitute A and B in formula then
By using specified cosine and sine angle i.e.,
On, Substituting the values, we have
On simplification we get
Hence, the exact functional value of
So, the correct answer is “
Note: Simply this can also be solve by using a ASTC rule i.e.,
By using the ASTC rule of trigonometry, the angle
While solving this type of question, we must know about the ASTC rule.
And also know the cosine sum or difference identity, for this we have a standard formula. To find the value for the trigonometry function we need the table of trigonometry ratios for standard angles.
Latest Vedantu courses for you
Grade 8 | CBSE | SCHOOL | English
Vedantu 8 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹45,300 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
