Answer
Verified
431.4k+ views
Hint: In this question, we have a trigonometric expression, which values find out. First, we simplify this expression in the form of a double angle and triple angle (trigonometric formula). Then we use the double angle and triple angle formula and solve it. After that, we convert them into quadratic equations. Then we find the roots of the quadratic equation. After that, we find the value of the given trigonometric expression.
Complete step by step solution:
In this question, we use the words double angle, triple angle. First, we know about the double angle formula.
Double angle formula: the double angle is called because they have a double angle of trigonometric functions like \[\sin 2\theta,\;\cos 2\theta \], etc.
The double angle formula is written as below in the form of\[\sin \].
\[ \Rightarrow \sin 2\theta = 2\sin \theta \cos \theta \]
Now we know about the triple angle formula.
Triple angle formula: the triple angle is called because they have a triple angle of trigonometric functions like \[\sin 3\theta,\;\cos 3\theta \], etc. the triple angle formula is written as below in the form of\[\sin \].
\[ \Rightarrow \sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \]
Now we come to the question. In the question, the trigonometric expression is given as below.
\[ \Rightarrow \sin \left( {\dfrac{\pi }{5}} \right)\]
Let we assume that,
\[ \Rightarrow \theta = \dfrac{\pi }{5}\]
Then,
\[5\theta = \pi \]
It can be written as below.
\[ \Rightarrow 3\theta = \pi - 2\theta \]
We write both sides of the trigonometric function\[\sin \].
Then,
\[ \Rightarrow \sin 3\theta = \sin \left( {\pi - 2\theta } \right)\]
We know that\[\sin \left( {\pi - \theta } \right) = \sin \theta \].
Then, the above expression is written as.
\[\sin 3\theta = \sin 2\theta \]
Now we use the double angle and triple angle formula.
Then,
\[ \Rightarrow 3\sin \theta - 4{\sin ^3}\theta = 2\sin \theta \cos \theta \]
We divided both sides with\[\sin \theta \].
Then,
\[ \Rightarrow 3 - 4{\sin ^2}\theta = 2\cos \theta \]
We know that\[{\sin ^2}\theta = 1 - {\cos ^2}\theta \].
Then the above expression is written as.
\[ \Rightarrow 3 - 4\left( {1 - {{\cos }^2}\theta } \right) = 2\cos \theta \]
Now we solve the above expression.
\[3 - 4 + 4{\cos ^2}\theta = 2\cos \theta \]
\[ \Rightarrow - 1 + 4{\cos ^2}\theta - 2\cos \theta = 0\]
We arrange the above expression as.
\[ \Rightarrow 4{\cos ^2}\theta - 2\cos \theta - 1 = 0\]
It is a quadratic equation. Hence the root of the quadratic equation is.
\[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Then from the above quadratic equation, the root is
\[\cos \theta = \dfrac{{2 \pm \sqrt {{2^2} - 4 \times 4 \times \left( { - 1} \right)} }}{{2 \times 4}}\]
\[ \Rightarrow \cos \theta = \dfrac{{2 \pm \sqrt {4 + 16} }}{8}\]
\[ \Rightarrow \cos \theta = \dfrac{{1 \pm \sqrt 5 }}{4}\]
We know that \[\cos \theta \] cannot take negative value, then
\[ \Rightarrow \cos \theta = \dfrac{{1 + \sqrt 5 }}{4}\]
Then we find the value of\[\sin \theta \].
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\cos }^2}\theta } \]
Put the \[\cos \theta \]from above.
Then,
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\left( {\dfrac{{1 + \sqrt 5 }}{4}} \right)}^2}} \]
\[ \Rightarrow \sin \theta = \sqrt {1 - \left( {\dfrac{{1 + 5 + 2\sqrt 5 }}{{16}}} \right)} \]
\[\therefore \sin \theta = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\]
Put the value of \[\theta \] in the above.
Then,
\[\sin \dfrac{\pi }{5} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\]
Therefore, the value of \[\sin \dfrac{\pi }{5}\] is \[\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\].
Note:
If you have a trigonometric function. And you want to find the value of that function. Then you can convert that function into double angle triple angle format. After applying the double angle and triple angle formula you can find the value of a trigonometric function.
Complete step by step solution:
In this question, we use the words double angle, triple angle. First, we know about the double angle formula.
Double angle formula: the double angle is called because they have a double angle of trigonometric functions like \[\sin 2\theta,\;\cos 2\theta \], etc.
The double angle formula is written as below in the form of\[\sin \].
\[ \Rightarrow \sin 2\theta = 2\sin \theta \cos \theta \]
Now we know about the triple angle formula.
Triple angle formula: the triple angle is called because they have a triple angle of trigonometric functions like \[\sin 3\theta,\;\cos 3\theta \], etc. the triple angle formula is written as below in the form of\[\sin \].
\[ \Rightarrow \sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \]
Now we come to the question. In the question, the trigonometric expression is given as below.
\[ \Rightarrow \sin \left( {\dfrac{\pi }{5}} \right)\]
Let we assume that,
\[ \Rightarrow \theta = \dfrac{\pi }{5}\]
Then,
\[5\theta = \pi \]
It can be written as below.
\[ \Rightarrow 3\theta = \pi - 2\theta \]
We write both sides of the trigonometric function\[\sin \].
Then,
\[ \Rightarrow \sin 3\theta = \sin \left( {\pi - 2\theta } \right)\]
We know that\[\sin \left( {\pi - \theta } \right) = \sin \theta \].
Then, the above expression is written as.
\[\sin 3\theta = \sin 2\theta \]
Now we use the double angle and triple angle formula.
Then,
\[ \Rightarrow 3\sin \theta - 4{\sin ^3}\theta = 2\sin \theta \cos \theta \]
We divided both sides with\[\sin \theta \].
Then,
\[ \Rightarrow 3 - 4{\sin ^2}\theta = 2\cos \theta \]
We know that\[{\sin ^2}\theta = 1 - {\cos ^2}\theta \].
Then the above expression is written as.
\[ \Rightarrow 3 - 4\left( {1 - {{\cos }^2}\theta } \right) = 2\cos \theta \]
Now we solve the above expression.
\[3 - 4 + 4{\cos ^2}\theta = 2\cos \theta \]
\[ \Rightarrow - 1 + 4{\cos ^2}\theta - 2\cos \theta = 0\]
We arrange the above expression as.
\[ \Rightarrow 4{\cos ^2}\theta - 2\cos \theta - 1 = 0\]
It is a quadratic equation. Hence the root of the quadratic equation is.
\[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Then from the above quadratic equation, the root is
\[\cos \theta = \dfrac{{2 \pm \sqrt {{2^2} - 4 \times 4 \times \left( { - 1} \right)} }}{{2 \times 4}}\]
\[ \Rightarrow \cos \theta = \dfrac{{2 \pm \sqrt {4 + 16} }}{8}\]
\[ \Rightarrow \cos \theta = \dfrac{{1 \pm \sqrt 5 }}{4}\]
We know that \[\cos \theta \] cannot take negative value, then
\[ \Rightarrow \cos \theta = \dfrac{{1 + \sqrt 5 }}{4}\]
Then we find the value of\[\sin \theta \].
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\cos }^2}\theta } \]
Put the \[\cos \theta \]from above.
Then,
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\left( {\dfrac{{1 + \sqrt 5 }}{4}} \right)}^2}} \]
\[ \Rightarrow \sin \theta = \sqrt {1 - \left( {\dfrac{{1 + 5 + 2\sqrt 5 }}{{16}}} \right)} \]
\[\therefore \sin \theta = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\]
Put the value of \[\theta \] in the above.
Then,
\[\sin \dfrac{\pi }{5} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\]
Therefore, the value of \[\sin \dfrac{\pi }{5}\] is \[\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\].
Note:
If you have a trigonometric function. And you want to find the value of that function. Then you can convert that function into double angle triple angle format. After applying the double angle and triple angle formula you can find the value of a trigonometric function.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE