Answer
Verified
429.3k+ views
Hint: We are given $\tan \left( \dfrac{3\pi }{4} \right)$ , we are asked to find its value, to do so we will learn about the relation between degree and the radian, then we will learn in which quadrant our coordinate will lie, once we have the quadrant will work on what sign it posses then using the value of the function in quadrant ‘I’, we will access the value of the function in that quadrant.
Complete step by step answer:
We are given $\tan \left( \dfrac{3\pi }{4} \right)$, we can see that the angle given to us is in radian.
We will change it into a degree as the degree is easy to see and understand.
Now the relation between degree and radian is given as –
180 degree $=\pi $ radian
Or
$\pi \text{ radian}=180\text{ degree}$
So, $1\text{ radian}=\dfrac{{{180}^{\circ }}}{\pi }\text{degree}$
By unitary method,
So, $\dfrac{3\pi }{4}\text{radian}=\dfrac{{{180}^{\circ }}}{\pi }\times \left( \dfrac{3\pi }{4} \right)\text{degree}$
By simplifying, we get –
$\dfrac{3\pi }{4}\text{radian}=135\text{ degree}$
Now we get the angle in degree is ${{135}^{\circ }}$ and we know that the first Quadrant is from 0 to ${{90}^{\circ }}$ .
second is from ${{90}^{\circ }}$ to ${{180}^{\circ }}$ so our angle ${{135}^{\circ }}$ will lie in the second Quadrant.
Now we will look for the sign of the tan functions in this Quadrant.
The tan function is positive in first and third Quadrant and in rest two it is negative so in Quadrant second, tan is negative.
Now we will see that ${{135}^{\circ }}$ can be written as ${{135}^{\circ }}={{180}^{\circ }}-{{45}^{\circ }}$ .
So, $\tan \left( {{135}^{\circ }} \right)=\tan \left( {{180}^{\circ }}-{{45}^{\circ }} \right)$
Now, we will use that –
$\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta $
So for $\tan \left( {{180}^{\circ }}-{{45}^{\circ }} \right)=-\tan \left( {{45}^{\circ }} \right)$
As we know that $\tan {{45}^{\circ }}=1$
So,
$\begin{align}
& \tan \left( {{180}^{\circ }}-{{45}^{\circ }} \right)=-\tan {{45}^{\circ }} \\
& =-1 \\
\end{align}$
Hence, we get –
$\tan \left( {{135}^{\circ }} \right)=-1$
Or we can say that –
$\tan \left( \dfrac{3\pi }{4} \right)=-1$
Note: Remember it is easy to see this on the degree scale, but it is not necessary to always change to the degree scale, we can also solve on the radian form also.
Now $\dfrac{3\pi }{4}=\pi -\dfrac{\pi }{4}$
So, $\tan \left( \dfrac{3\pi }{4} \right)=\tan \left( \pi -\dfrac{\pi }{4} \right)$
As we know $\tan \left( \pi -\theta \right)=-\tan \theta $
So in our case $\theta =\dfrac{\pi }{4}$
So, $\tan \left( \pi -\dfrac{\pi }{4} \right)=-\tan \left( \dfrac{\pi }{4} \right)$
As $\tan \dfrac{\pi }{4}=1$
So,
$\tan \left( \dfrac{3\pi }{4} \right)=\tan \left( \pi -\dfrac{\pi }{4} \right)=-\tan \dfrac{\pi }{4}=-1$
Hence the value of $\tan \left( \dfrac{3\pi }{4} \right)$is -1.
Complete step by step answer:
We are given $\tan \left( \dfrac{3\pi }{4} \right)$, we can see that the angle given to us is in radian.
We will change it into a degree as the degree is easy to see and understand.
Now the relation between degree and radian is given as –
180 degree $=\pi $ radian
Or
$\pi \text{ radian}=180\text{ degree}$
So, $1\text{ radian}=\dfrac{{{180}^{\circ }}}{\pi }\text{degree}$
By unitary method,
So, $\dfrac{3\pi }{4}\text{radian}=\dfrac{{{180}^{\circ }}}{\pi }\times \left( \dfrac{3\pi }{4} \right)\text{degree}$
By simplifying, we get –
$\dfrac{3\pi }{4}\text{radian}=135\text{ degree}$
Now we get the angle in degree is ${{135}^{\circ }}$ and we know that the first Quadrant is from 0 to ${{90}^{\circ }}$ .
second is from ${{90}^{\circ }}$ to ${{180}^{\circ }}$ so our angle ${{135}^{\circ }}$ will lie in the second Quadrant.
Now we will look for the sign of the tan functions in this Quadrant.
The tan function is positive in first and third Quadrant and in rest two it is negative so in Quadrant second, tan is negative.
Now we will see that ${{135}^{\circ }}$ can be written as ${{135}^{\circ }}={{180}^{\circ }}-{{45}^{\circ }}$ .
So, $\tan \left( {{135}^{\circ }} \right)=\tan \left( {{180}^{\circ }}-{{45}^{\circ }} \right)$
Now, we will use that –
$\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta $
So for $\tan \left( {{180}^{\circ }}-{{45}^{\circ }} \right)=-\tan \left( {{45}^{\circ }} \right)$
As we know that $\tan {{45}^{\circ }}=1$
So,
$\begin{align}
& \tan \left( {{180}^{\circ }}-{{45}^{\circ }} \right)=-\tan {{45}^{\circ }} \\
& =-1 \\
\end{align}$
Hence, we get –
$\tan \left( {{135}^{\circ }} \right)=-1$
Or we can say that –
$\tan \left( \dfrac{3\pi }{4} \right)=-1$
Note: Remember it is easy to see this on the degree scale, but it is not necessary to always change to the degree scale, we can also solve on the radian form also.
Now $\dfrac{3\pi }{4}=\pi -\dfrac{\pi }{4}$
So, $\tan \left( \dfrac{3\pi }{4} \right)=\tan \left( \pi -\dfrac{\pi }{4} \right)$
As we know $\tan \left( \pi -\theta \right)=-\tan \theta $
So in our case $\theta =\dfrac{\pi }{4}$
So, $\tan \left( \pi -\dfrac{\pi }{4} \right)=-\tan \left( \dfrac{\pi }{4} \right)$
As $\tan \dfrac{\pi }{4}=1$
So,
$\tan \left( \dfrac{3\pi }{4} \right)=\tan \left( \pi -\dfrac{\pi }{4} \right)=-\tan \dfrac{\pi }{4}=-1$
Hence the value of $\tan \left( \dfrac{3\pi }{4} \right)$is -1.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers