Answer
Verified
409.5k+ views
Hint: In order to evaluate the value of $ \arctan (3) $ , we need to know first what is $ \arctan $ . $ \arctan x $ is an angle whose tangent function is equal to $ \dfrac{x}{1} $ . Equate $ \arctan x $ with $ \arctan (3) $ and put it in the value $ \tan p = \tan \left( {\arctan x} \right) $ and solve for $ p $ , where $ p $ represents an angle opposite the perpendicular.
Complete step by step solution:
We are given $ \arctan (3) $ .
Let $ p = \arctan x $ , where $ p $ represents an angle opposite the perpendicular.
The representing diagram of the following is:
So, we can write it as:
$ \tan p = \tan \left( {\arctan x} \right) $
As we know that $ \arctan x $ is an angle whose tangent function is equal to $ \dfrac{x}{1} $ .
So, from the previous equation we can write:
$ \tan p = \tan \left( {\arctan x} \right) = \dfrac{x}{1} $
We are given with $ \arctan (3) $ , so from the above equation we can write it as:
$ \tan p = \tan \left( {\arctan 3} \right) = \dfrac{3}{1} $
Basically, we need to calculate $ p $ which is the angle opposite perpendicular.
From above equation we can write:
$
\tan \left( {\arctan 3} \right) = 3 \\
\arctan 3 = {\tan ^{ - 1}}3 \;
$
Since, we don’t know the value of $ {\tan ^{ - 1}}3 $ , so by using calculator we get that:
$ {\tan ^{ - 1}}3 = 71.565 $ .
Since, we got $ \tan p = \tan \left( {\arctan 3} \right) $ , placing the value of $ \arctan 3 = {\tan ^{ - 1}}3 $ and we get:
$ \tan p = \tan \left( {{{\tan }^{ - 1}}3} \right) $
That implies $ p = \left( {{{\tan }^{ - 1}}\left( 3 \right)} \right) = 71.565 $ .
Therefore, The value of $ \left( {\arctan 3} \right) = 71.565 $ in degrees.
But, to write the value in radians multiply the value $ \left( {\arctan 3} \right) = 71.565 $ in degrees with $ \dfrac{\pi }{{180}} $ and we get:
$ \left( {\arctan 3} \right) = 71.565 \times \dfrac{\pi }{{180}} $ radians
On further solving we get:
$ \left( {\arctan 3} \right) = 1.2490 $ radians.
Therefore, The value of $ \left( {\arctan 3} \right) = 1.2490 $ in radians.
So, the correct answer is “1.2490 radians”.
Note:
i.It’s not compulsory to convert the value in radians until its not given in the question, we can leave at degree also.
ii.If some trigonometric values are not known to us for some different angles, then only calculators should be used.
iii.We could have done the question directly without taking $ p $ , then also it would have given the same answer.
Complete step by step solution:
We are given $ \arctan (3) $ .
Let $ p = \arctan x $ , where $ p $ represents an angle opposite the perpendicular.
The representing diagram of the following is:
So, we can write it as:
$ \tan p = \tan \left( {\arctan x} \right) $
As we know that $ \arctan x $ is an angle whose tangent function is equal to $ \dfrac{x}{1} $ .
So, from the previous equation we can write:
$ \tan p = \tan \left( {\arctan x} \right) = \dfrac{x}{1} $
We are given with $ \arctan (3) $ , so from the above equation we can write it as:
$ \tan p = \tan \left( {\arctan 3} \right) = \dfrac{3}{1} $
Basically, we need to calculate $ p $ which is the angle opposite perpendicular.
From above equation we can write:
$
\tan \left( {\arctan 3} \right) = 3 \\
\arctan 3 = {\tan ^{ - 1}}3 \;
$
Since, we don’t know the value of $ {\tan ^{ - 1}}3 $ , so by using calculator we get that:
$ {\tan ^{ - 1}}3 = 71.565 $ .
Since, we got $ \tan p = \tan \left( {\arctan 3} \right) $ , placing the value of $ \arctan 3 = {\tan ^{ - 1}}3 $ and we get:
$ \tan p = \tan \left( {{{\tan }^{ - 1}}3} \right) $
That implies $ p = \left( {{{\tan }^{ - 1}}\left( 3 \right)} \right) = 71.565 $ .
Therefore, The value of $ \left( {\arctan 3} \right) = 71.565 $ in degrees.
But, to write the value in radians multiply the value $ \left( {\arctan 3} \right) = 71.565 $ in degrees with $ \dfrac{\pi }{{180}} $ and we get:
$ \left( {\arctan 3} \right) = 71.565 \times \dfrac{\pi }{{180}} $ radians
On further solving we get:
$ \left( {\arctan 3} \right) = 1.2490 $ radians.
Therefore, The value of $ \left( {\arctan 3} \right) = 1.2490 $ in radians.
So, the correct answer is “1.2490 radians”.
Note:
i.It’s not compulsory to convert the value in radians until its not given in the question, we can leave at degree also.
ii.If some trigonometric values are not known to us for some different angles, then only calculators should be used.
iii.We could have done the question directly without taking $ p $ , then also it would have given the same answer.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE