Answer
Verified
499.5k+ views
Hint: Use basic identity of logarithm given by;
If ${{a}^{x}}=N\text{ then }{{\log }_{a}}N=x$
We have equations/expression given in the problem as
\[{{\log }_{2}}xy=5.............\left( 1 \right)\]
And
\[{{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1....................\left( 2 \right)\]
As, we know that if ${{a}^{x}}=N$ then we can take log to both sides as base of $a$
And we get:
${{a}^{x}}=N$
Taking $\log $ on both sides
${{\log }_{a}}{{a}^{x}}={{\log }_{a}}N$
As we know that ${{\log }_{c}}{{m}^{n}}=n{{\log }_{c}}m$ ;
Using this property we can write the above equation as;
$x{{\log }_{a}}a={{\log }_{a}}N$
As we know ${{\log }_{m}}m=1$ , we can rewrite the above relation as;
${{\log }_{a}}N=x$
Therefore, if we have ${{a}^{x}}=N$
Then ${{\log }_{a}}N=x................\left( 3 \right)$
Using the above property of logarithm we can write equation $\left( 1 \right)$ as
${{\log }_{2}}xy=5$
$xy={{2}^{5}}.................\left( 4 \right)$
Similarly, using the equation $\left( 3 \right)$ , we can write equation $\left( 2 \right)$ as
$\begin{align}
& {{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1 \\
& \dfrac{x}{y}={{\left( \dfrac{1}{2} \right)}^{1}}=\left( \dfrac{1}{2} \right)..............\left( 5 \right) \\
\end{align}$
Now, we need to find $x\text{ and y}$ ; For that we can multiply equation $\left( 4 \right)\text{ and }\left( 5 \right)$ in following way;
$\begin{align}
& xy\times \dfrac{x}{y}={{2}^{5}}\times \dfrac{1}{2} \\
& {{x}^{2}}=\dfrac{32}{2}=16 \\
& {{x}^{2}}=16 \\
& x=\pm 4 \\
\end{align}$
To get value of $y$ , we can divide equation $\left( 4 \right)\And \left( 5 \right)$
$\begin{align}
& \dfrac{xy}{\left( \dfrac{x}{y} \right)}=\dfrac{{{2}^{5}}}{\left( \dfrac{1}{2} \right)} \\
& xy\times \dfrac{y}{x}=32\times 2 \\
& {{y}^{2}}=64 \\
& y=\pm 8 \\
\end{align}$
Hence, we have $x=\pm 4\text{ and }y=\pm 8$ .
Now, here we need to select $\left( x,y \right)$ pairs which will satisfy the equation$\left( 5 \right)\And \left( 4 \right)$.
Now, we have four pairs as
$\begin{align}
& x=4,y=8 \\
& x=-4,y=-8 \\
& x=4,y=-8 \\
& x=-4,y=8 \\
\end{align}$
We can put pairs to equation $\left( 4 \right)\And \left( 5 \right)$for verification
Case 1: $x=4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=4\times 8=32=RHS$
For equation \[\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}\]
\[LHS=\dfrac{4}{8}=\dfrac{1}{2}=RHS\]
Hence $\left( 4,8 \right)$ is the solution of the given equations.
Case 2: $x=-4,y=8$
For equation $\left( 4 \right)$ $xy=32$
$LHS=-4\times -8=32=RHS$
For equation $\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}$
\[LHS=\dfrac{-4}{-8}=\dfrac{1}{2}=RHS\]
Hence, $\left( -4,-8 \right)$ pair is also a solution of the given equations.
Case 3: $x=-4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=-4\times 8=-32\ne RHS$
It will not satisfy the equation $\left( 5 \right)$ $\dfrac{x}{y}=\dfrac{1}{2}$ as well.
Hence, $\left( -4,8 \right)$ pair is not a solution to the given equation.
Case 4: $x=4,y=-8$
For equation $\left( 4 \right)\text{ }xy=32$
$4\times \left( -8 \right)=-32\ne RHS$
For equation $\left( 5 \right)\dfrac{x}{y}=\dfrac{1}{2}$
$LHS=\dfrac{4}{-8}=-\dfrac{1}{2}\ne RHS$
Hence,$\left( 4,-8 \right)$ is not a solution of the given equation.
Note: We can get answers by putting values of $x=\pm 4$ in any of the equation $\left( 3 \right)\And \left( 4 \right)$ which will minimize our confusion related to $\left( -4,8 \right)or\left( 4,-8 \right)$ as explained in solution. One can also skip the question by just seeing the solution by just seeing the given function $\left( {{\log }_{2}}xy=5\text{ }\!\!\And\!\!\text{ }{{\log }_{\dfrac{1}{2}}}\dfrac{x}{y}=1 \right)$ as we cannot put negative values in logarithm $m$ function. Domain of $\log x$ is ${{R}^{+}}$ (positive real numbers).
One can go wrong by getting confused with formula if ${{a}^{x}}=N$ then ${{\log }_{a}}N=x$ . He/she may apply if ${{a}^{x}}=N$then ${{\log }_{N}}a=x$(general confusion with basic definition of logarithm function).
If ${{a}^{x}}=N\text{ then }{{\log }_{a}}N=x$
We have equations/expression given in the problem as
\[{{\log }_{2}}xy=5.............\left( 1 \right)\]
And
\[{{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1....................\left( 2 \right)\]
As, we know that if ${{a}^{x}}=N$ then we can take log to both sides as base of $a$
And we get:
${{a}^{x}}=N$
Taking $\log $ on both sides
${{\log }_{a}}{{a}^{x}}={{\log }_{a}}N$
As we know that ${{\log }_{c}}{{m}^{n}}=n{{\log }_{c}}m$ ;
Using this property we can write the above equation as;
$x{{\log }_{a}}a={{\log }_{a}}N$
As we know ${{\log }_{m}}m=1$ , we can rewrite the above relation as;
${{\log }_{a}}N=x$
Therefore, if we have ${{a}^{x}}=N$
Then ${{\log }_{a}}N=x................\left( 3 \right)$
Using the above property of logarithm we can write equation $\left( 1 \right)$ as
${{\log }_{2}}xy=5$
$xy={{2}^{5}}.................\left( 4 \right)$
Similarly, using the equation $\left( 3 \right)$ , we can write equation $\left( 2 \right)$ as
$\begin{align}
& {{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1 \\
& \dfrac{x}{y}={{\left( \dfrac{1}{2} \right)}^{1}}=\left( \dfrac{1}{2} \right)..............\left( 5 \right) \\
\end{align}$
Now, we need to find $x\text{ and y}$ ; For that we can multiply equation $\left( 4 \right)\text{ and }\left( 5 \right)$ in following way;
$\begin{align}
& xy\times \dfrac{x}{y}={{2}^{5}}\times \dfrac{1}{2} \\
& {{x}^{2}}=\dfrac{32}{2}=16 \\
& {{x}^{2}}=16 \\
& x=\pm 4 \\
\end{align}$
To get value of $y$ , we can divide equation $\left( 4 \right)\And \left( 5 \right)$
$\begin{align}
& \dfrac{xy}{\left( \dfrac{x}{y} \right)}=\dfrac{{{2}^{5}}}{\left( \dfrac{1}{2} \right)} \\
& xy\times \dfrac{y}{x}=32\times 2 \\
& {{y}^{2}}=64 \\
& y=\pm 8 \\
\end{align}$
Hence, we have $x=\pm 4\text{ and }y=\pm 8$ .
Now, here we need to select $\left( x,y \right)$ pairs which will satisfy the equation$\left( 5 \right)\And \left( 4 \right)$.
Now, we have four pairs as
$\begin{align}
& x=4,y=8 \\
& x=-4,y=-8 \\
& x=4,y=-8 \\
& x=-4,y=8 \\
\end{align}$
We can put pairs to equation $\left( 4 \right)\And \left( 5 \right)$for verification
Case 1: $x=4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=4\times 8=32=RHS$
For equation \[\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}\]
\[LHS=\dfrac{4}{8}=\dfrac{1}{2}=RHS\]
Hence $\left( 4,8 \right)$ is the solution of the given equations.
Case 2: $x=-4,y=8$
For equation $\left( 4 \right)$ $xy=32$
$LHS=-4\times -8=32=RHS$
For equation $\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}$
\[LHS=\dfrac{-4}{-8}=\dfrac{1}{2}=RHS\]
Hence, $\left( -4,-8 \right)$ pair is also a solution of the given equations.
Case 3: $x=-4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=-4\times 8=-32\ne RHS$
It will not satisfy the equation $\left( 5 \right)$ $\dfrac{x}{y}=\dfrac{1}{2}$ as well.
Hence, $\left( -4,8 \right)$ pair is not a solution to the given equation.
Case 4: $x=4,y=-8$
For equation $\left( 4 \right)\text{ }xy=32$
$4\times \left( -8 \right)=-32\ne RHS$
For equation $\left( 5 \right)\dfrac{x}{y}=\dfrac{1}{2}$
$LHS=\dfrac{4}{-8}=-\dfrac{1}{2}\ne RHS$
Hence,$\left( 4,-8 \right)$ is not a solution of the given equation.
Note: We can get answers by putting values of $x=\pm 4$ in any of the equation $\left( 3 \right)\And \left( 4 \right)$ which will minimize our confusion related to $\left( -4,8 \right)or\left( 4,-8 \right)$ as explained in solution. One can also skip the question by just seeing the solution by just seeing the given function $\left( {{\log }_{2}}xy=5\text{ }\!\!\And\!\!\text{ }{{\log }_{\dfrac{1}{2}}}\dfrac{x}{y}=1 \right)$ as we cannot put negative values in logarithm $m$ function. Domain of $\log x$ is ${{R}^{+}}$ (positive real numbers).
One can go wrong by getting confused with formula if ${{a}^{x}}=N$ then ${{\log }_{a}}N=x$ . He/she may apply if ${{a}^{x}}=N$then ${{\log }_{N}}a=x$(general confusion with basic definition of logarithm function).
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE