Evaluate the expression $\underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{\sqrt{7+2x}-\left(
\sqrt{5}+\sqrt{2} \right)}{{{x}^{2}}-10}$
Answer
Verified
508.8k+ views
Hint: You could use either of the two here, you could use L’ Hopital’s rule after confirming this limit has
an indeterminate form, or you could directly work by rationalising the numerator, to do away with the
radicals, and then simply substituting $x$ with its limiting value in the expression you get thereafter.
We’ll use the simple way of rationalising to find out the limit over here, since it’s easier.
Now the given equation is;
$\underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{\sqrt{7+2x}-\left( \sqrt{5}+\sqrt{2} \right)}{{{x}^{2}}-
10}$ ………………..(i)
Now, let’s try rationalising equation (i).
For that, let’s multiply the numerator and the denominator with the conjugate of whatever part of the
fraction has the radicals. Since we have radicals in the numerator, we’ll multiply the numerator and
denominator by its conjugate, which $=\sqrt{7+2x}+(\sqrt{5}+\sqrt{2})$
Doing so, we get :
$\Rightarrow \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{\sqrt{7+2x}-\left( \sqrt{5}+\sqrt{2}
\right)}{{{x}^{2}}-10}\times \dfrac{\sqrt{7+2x}+\left( \sqrt{5}+\sqrt{2} \right)}{\sqrt{7+2x}+\left(
\sqrt{5}+\sqrt{2} \right)}$
Now, above equation numerator looks similar to the identity,
$\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, where $a=\sqrt{7+2x},b=\sqrt{5}+\sqrt{2}$
So what we could do here is, apply the identity mentioned above. Doing so, we get :
\[\Rightarrow \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{{{\left( \sqrt{7+2x} \right)}^{2}}-{{\left(
\sqrt{5}+\sqrt{2} \right)}^{2}}}{({{x}^{2}}-10)\left( \sqrt{7+2x}+\left( \sqrt{5}+\sqrt{2} \right) \right)}\]
Now, let’s try further simplifying the above equation. After solving the above equation further, we get;
$\to \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{\left( 7+2x \right)-\left( 5+2+2\sqrt{10}
\right)}{\left( {{x}^{2}}-10 \right)\left( \sqrt{7+2x}+\sqrt{5}+\sqrt{2} \right)}$ (Using property:
\[\underset{{}}{\mathop{{{\left( a+b \right)}^{2}}}}\,={{a}^{2}}+{{b}^{2}}+2ab\] )
Now, on opening the brackets in the numerator and solving it, we get :
$\Rightarrow \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{{7}+2x-{7}-
2\sqrt{10}}{\left( {{x}^{2}}-10 \right)\left( \sqrt{7+2x}+\sqrt{5}+\sqrt{2} \right)}$
Taking $2$ common from the terms in the numerator, we get :
$\Rightarrow \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{2{\left( x-\sqrt{10}
\right)}}{{\left( x-\sqrt{10} \right)}\left( x+\sqrt{10} \right)\left( \sqrt{7+2x}+\sqrt{5}+\sqrt{2}
\right)}$……………….(ii)
Now, let’s put the \[\underset{x\to \sqrt{10}}{\mathop{\lim }}\,\] in the equation (ii). Doing so, we get :
$\Rightarrow \dfrac{2}{\left( \sqrt{10}+\sqrt{10} \right)\left( \sqrt{7+2\sqrt{10}}+\sqrt{5}+\sqrt{2}
\right)}$
$\Rightarrow \dfrac{{{2}}}{{2}\sqrt{10}\left( \left( \sqrt{7+2\sqrt{10}}
\right)+\sqrt{5}+\sqrt{2} \right)}$
$\Rightarrow \dfrac{1}{\sqrt{10}\left( \sqrt{7+2\sqrt{10}}+\sqrt{5}+\sqrt{2} \right)}$
Hence, the solution is $\dfrac{1}{\sqrt{10}\left( \sqrt{7+2\sqrt{10}}+\sqrt{5}+\sqrt{2}
\right)}$
Note: We, here have used rationalisation followed by substitution to solve the limit. We could also use
L’ Hopital Rule, because the limit becomes a $\dfrac{0}{0}$ form on putting $x=\sqrt{10}$ in the limit.
Note that,
$\sqrt{7+2\sqrt{10}}=\sqrt{{{(\sqrt{5})}^{2}}+{{(\sqrt{2})}^{2}}+2.\sqrt{2}.\sqrt{5}}=\sqrt{{{\left(
\sqrt{5}+\sqrt{2} \right)}^{2}}}=\sqrt{5}+\sqrt{2}$, and this is what makes the numerator zero on putting
$x=\sqrt{10}$. Thus, you could’ve used L’ Hopital Rule over here as well.
an indeterminate form, or you could directly work by rationalising the numerator, to do away with the
radicals, and then simply substituting $x$ with its limiting value in the expression you get thereafter.
We’ll use the simple way of rationalising to find out the limit over here, since it’s easier.
Now the given equation is;
$\underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{\sqrt{7+2x}-\left( \sqrt{5}+\sqrt{2} \right)}{{{x}^{2}}-
10}$ ………………..(i)
Now, let’s try rationalising equation (i).
For that, let’s multiply the numerator and the denominator with the conjugate of whatever part of the
fraction has the radicals. Since we have radicals in the numerator, we’ll multiply the numerator and
denominator by its conjugate, which $=\sqrt{7+2x}+(\sqrt{5}+\sqrt{2})$
Doing so, we get :
$\Rightarrow \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{\sqrt{7+2x}-\left( \sqrt{5}+\sqrt{2}
\right)}{{{x}^{2}}-10}\times \dfrac{\sqrt{7+2x}+\left( \sqrt{5}+\sqrt{2} \right)}{\sqrt{7+2x}+\left(
\sqrt{5}+\sqrt{2} \right)}$
Now, above equation numerator looks similar to the identity,
$\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, where $a=\sqrt{7+2x},b=\sqrt{5}+\sqrt{2}$
So what we could do here is, apply the identity mentioned above. Doing so, we get :
\[\Rightarrow \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{{{\left( \sqrt{7+2x} \right)}^{2}}-{{\left(
\sqrt{5}+\sqrt{2} \right)}^{2}}}{({{x}^{2}}-10)\left( \sqrt{7+2x}+\left( \sqrt{5}+\sqrt{2} \right) \right)}\]
Now, let’s try further simplifying the above equation. After solving the above equation further, we get;
$\to \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{\left( 7+2x \right)-\left( 5+2+2\sqrt{10}
\right)}{\left( {{x}^{2}}-10 \right)\left( \sqrt{7+2x}+\sqrt{5}+\sqrt{2} \right)}$ (Using property:
\[\underset{{}}{\mathop{{{\left( a+b \right)}^{2}}}}\,={{a}^{2}}+{{b}^{2}}+2ab\] )
Now, on opening the brackets in the numerator and solving it, we get :
$\Rightarrow \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{{7}+2x-{7}-
2\sqrt{10}}{\left( {{x}^{2}}-10 \right)\left( \sqrt{7+2x}+\sqrt{5}+\sqrt{2} \right)}$
Taking $2$ common from the terms in the numerator, we get :
$\Rightarrow \underset{x\to \sqrt{10}}{\mathop{\lim }}\,\dfrac{2{\left( x-\sqrt{10}
\right)}}{{\left( x-\sqrt{10} \right)}\left( x+\sqrt{10} \right)\left( \sqrt{7+2x}+\sqrt{5}+\sqrt{2}
\right)}$……………….(ii)
Now, let’s put the \[\underset{x\to \sqrt{10}}{\mathop{\lim }}\,\] in the equation (ii). Doing so, we get :
$\Rightarrow \dfrac{2}{\left( \sqrt{10}+\sqrt{10} \right)\left( \sqrt{7+2\sqrt{10}}+\sqrt{5}+\sqrt{2}
\right)}$
$\Rightarrow \dfrac{{{2}}}{{2}\sqrt{10}\left( \left( \sqrt{7+2\sqrt{10}}
\right)+\sqrt{5}+\sqrt{2} \right)}$
$\Rightarrow \dfrac{1}{\sqrt{10}\left( \sqrt{7+2\sqrt{10}}+\sqrt{5}+\sqrt{2} \right)}$
Hence, the solution is $\dfrac{1}{\sqrt{10}\left( \sqrt{7+2\sqrt{10}}+\sqrt{5}+\sqrt{2}
\right)}$
Note: We, here have used rationalisation followed by substitution to solve the limit. We could also use
L’ Hopital Rule, because the limit becomes a $\dfrac{0}{0}$ form on putting $x=\sqrt{10}$ in the limit.
Note that,
$\sqrt{7+2\sqrt{10}}=\sqrt{{{(\sqrt{5})}^{2}}+{{(\sqrt{2})}^{2}}+2.\sqrt{2}.\sqrt{5}}=\sqrt{{{\left(
\sqrt{5}+\sqrt{2} \right)}^{2}}}=\sqrt{5}+\sqrt{2}$, and this is what makes the numerator zero on putting
$x=\sqrt{10}$. Thus, you could’ve used L’ Hopital Rule over here as well.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE