Answer
Verified
430.5k+ views
Hint: To evaluate the trigonometric ratios above we just need the values of these functions for respective angles. Also we need to know the basic trigonometric identities. We will simply tabulate the values of functions and angles. Then we will substitute the values on their asked trigonometric identity. If required we will take LCM and simplify the ratio.
Complete Step by Step Solution:
We will write the basic values of the functions for the angles so taken.
Now the table is completed we will directly use these values from the table and we will put them in the problems.
1. \[\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + \cos ec{{30}^ \circ }}}\]
Putting the values we get,
\[ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{2}{{\sqrt 3 }} + 2}}\]
Taking LCM of denominator we get,
\[ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{{2 + 2\sqrt 3 }}{{\sqrt 3 }}}}\]
Now rearranging the terms we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{{2 + 2\sqrt 3 }}\]
on multiplying the denominator,
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{2\sqrt 2 + 2\sqrt 5 }}\]
This is our answer.
2. \[\dfrac{{\sin {{30}^ \circ } + \tan {{45}^ \circ } - \cos ec{{60}^ \circ }}}{{\sec {{30}^ \circ } + \cos {{60}^ \circ } + \cot {{45}^ \circ }}}\]
Putting the values we get,
\[ \Rightarrow \dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{2 + \dfrac{1}{2} + 1}}\]
Taking LCM of numerator and denominator
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 + 2\sqrt 3 - 2 \times 2}}{{2\sqrt 3 }}}}{{\dfrac{{2 \times 2 + 2 + 2}}{2}}}\]
On solving the terms
\[ \Rightarrow \dfrac{{\dfrac{{3\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{8}{2}}}\]
Again simplifying the ratios
\[ \Rightarrow \dfrac{{3\sqrt 3 - 4}}{{2\sqrt 3 }} \times \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{3\sqrt 3 - 4}}{{8\sqrt 3 }}\]
This is our answer.
3. \[\dfrac{{5{{\cos }^2}{{60}^ \circ } + 4{{\sec }^2}{{30}^ \circ } - {{\tan }^2}{{45}^ \circ }}}{{{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{30}^ \circ }}}\]
This equation above can also be written as,
\[ \Rightarrow \dfrac{{5{{\left( {\cos {{60}^ \circ }} \right)}^2} + 4{{\left( {\sec {{30}^ \circ }} \right)}^2} - {{\left( {\tan {{45}^ \circ }} \right)}^2}}}{{{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{30}^ \circ }}}\]
In the denominator we know that \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] . so denominator is 1. So we can rewrite the expression again as,
\[ \Rightarrow 5{\left( {\cos {{60}^ \circ }} \right)^2} + 4{\left( {\sec {{30}^ \circ }} \right)^2} - {\left( {\tan {{45}^ \circ }} \right)^2}\]
Putting the values we get,
\[ \Rightarrow 5{\left( {\dfrac{1}{2}} \right)^2} + 4{\left( {\dfrac{2}{{\sqrt 3 }}} \right)^2} - {\left( 1 \right)^2}\]
Taking the squares and solving the ratios,
\[ \Rightarrow \dfrac{5}{4} + \dfrac{{4 \times 4}}{3} - 1\]
Taking LCM
\[ \Rightarrow \dfrac{{5 \times 3 + 16 \times 4 - 4 \times 3}}{{12}}\]
And then solving again,
\[ \Rightarrow \dfrac{{15 + 64 - 12}}{{12}}\]
\[ \Rightarrow \dfrac{{67}}{{12}}\]
This is our answer. To further simplify we will get the answer in decimals.
So,
Note:
Evaluating the question is nothing but finding the solution. Not only a solution but in simplest form as much as possible. Here we used some identities also along with the trigonometric functions, their angles and their values. Remember that the terms with the same root only can be added or simplified.
Complete Step by Step Solution:
We will write the basic values of the functions for the angles so taken.
FunctionAngles | sin | cos | tan | cot | sec | Cosec |
\[{30^ \circ }\] | \[\dfrac{1}{2}\] | \[\dfrac{{\sqrt 3 }}{2}\] | \[\dfrac{1}{{\sqrt 3 }}\] | \[\sqrt 3 \] | \[\dfrac{2}{{\sqrt 3 }}\] | 2 |
\[{45^ \circ }\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[1\] | 1 | \[\sqrt 2 \] | \[\sqrt 2 \] |
\[{60^ \circ }\] | \[\dfrac{{\sqrt 3 }}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt 3 \] | \[\dfrac{1}{{\sqrt 3 }}\] | 2 | \[\dfrac{2}{{\sqrt 3 }}\] |
Now the table is completed we will directly use these values from the table and we will put them in the problems.
1. \[\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + \cos ec{{30}^ \circ }}}\]
Putting the values we get,
\[ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{2}{{\sqrt 3 }} + 2}}\]
Taking LCM of denominator we get,
\[ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{{2 + 2\sqrt 3 }}{{\sqrt 3 }}}}\]
Now rearranging the terms we get,
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{{2 + 2\sqrt 3 }}\]
on multiplying the denominator,
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{2\sqrt 2 + 2\sqrt 5 }}\]
This is our answer.
2. \[\dfrac{{\sin {{30}^ \circ } + \tan {{45}^ \circ } - \cos ec{{60}^ \circ }}}{{\sec {{30}^ \circ } + \cos {{60}^ \circ } + \cot {{45}^ \circ }}}\]
Putting the values we get,
\[ \Rightarrow \dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{2 + \dfrac{1}{2} + 1}}\]
Taking LCM of numerator and denominator
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 + 2\sqrt 3 - 2 \times 2}}{{2\sqrt 3 }}}}{{\dfrac{{2 \times 2 + 2 + 2}}{2}}}\]
On solving the terms
\[ \Rightarrow \dfrac{{\dfrac{{3\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{8}{2}}}\]
Again simplifying the ratios
\[ \Rightarrow \dfrac{{3\sqrt 3 - 4}}{{2\sqrt 3 }} \times \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{3\sqrt 3 - 4}}{{8\sqrt 3 }}\]
This is our answer.
3. \[\dfrac{{5{{\cos }^2}{{60}^ \circ } + 4{{\sec }^2}{{30}^ \circ } - {{\tan }^2}{{45}^ \circ }}}{{{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{30}^ \circ }}}\]
This equation above can also be written as,
\[ \Rightarrow \dfrac{{5{{\left( {\cos {{60}^ \circ }} \right)}^2} + 4{{\left( {\sec {{30}^ \circ }} \right)}^2} - {{\left( {\tan {{45}^ \circ }} \right)}^2}}}{{{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{30}^ \circ }}}\]
In the denominator we know that \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] . so denominator is 1. So we can rewrite the expression again as,
\[ \Rightarrow 5{\left( {\cos {{60}^ \circ }} \right)^2} + 4{\left( {\sec {{30}^ \circ }} \right)^2} - {\left( {\tan {{45}^ \circ }} \right)^2}\]
Putting the values we get,
\[ \Rightarrow 5{\left( {\dfrac{1}{2}} \right)^2} + 4{\left( {\dfrac{2}{{\sqrt 3 }}} \right)^2} - {\left( 1 \right)^2}\]
Taking the squares and solving the ratios,
\[ \Rightarrow \dfrac{5}{4} + \dfrac{{4 \times 4}}{3} - 1\]
Taking LCM
\[ \Rightarrow \dfrac{{5 \times 3 + 16 \times 4 - 4 \times 3}}{{12}}\]
And then solving again,
\[ \Rightarrow \dfrac{{15 + 64 - 12}}{{12}}\]
\[ \Rightarrow \dfrac{{67}}{{12}}\]
This is our answer. To further simplify we will get the answer in decimals.
So,
\[\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + \cos ec{{30}^ \circ }}}\] | \[ \Rightarrow \dfrac{{\sqrt 3 }}{{2\sqrt 2 + 2\sqrt 5 }}\] |
\[\dfrac{{\sin {{30}^ \circ } + \tan {{45}^ \circ } - \cos ec{{60}^ \circ }}}{{\sec {{30}^ \circ } + \cos {{60}^ \circ } + \cot {{45}^ \circ }}}\] | \[ \Rightarrow \dfrac{{3\sqrt 3 - 4}}{{8\sqrt 3 }}\] |
\[\dfrac{{5{{\cos }^2}{{60}^ \circ } + 4{{\sec }^2}{{30}^ \circ } - {{\tan }^2}{{45}^ \circ }}}{{{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{30}^ \circ }}}\] | \[ \Rightarrow \dfrac{{67}}{{12}}\] |
Note:
Evaluating the question is nothing but finding the solution. Not only a solution but in simplest form as much as possible. Here we used some identities also along with the trigonometric functions, their angles and their values. Remember that the terms with the same root only can be added or simplified.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE