
Evaluate the following:
$\dfrac{{\cos 37^\circ }}{{\sin 53^\circ }}$
Answer
579.6k+ views
Hint:
Here, we are asked to find the value of the trigonometric fraction $\dfrac{{\cos 37^\circ }}{{\sin 53^\circ }}$.
Now, use the property $\sin x = \cos \left( {90^\circ - x} \right)$ and find the value of \[\sin 53^\circ \] in the terms of cosine function.
Thus, to get the required answer, substitute the value of \[\sin 53^\circ \] in terms of cosine function in the given trigonometric equation.
Complete step by step solution:
Here, we are asked to find the value of the trigonometric fraction $\dfrac{{\cos 37^\circ }}{{\sin 53^\circ }}$ .
We know the property that, $\sin x$ can also be written as $\cos \left( {90^\circ - x} \right)$ i.e. $\sin x = \cos \left( {90^\circ - x} \right)$ .
So, using the above property, we can write $\sin 53^\circ $ as $\cos \left( {90^\circ - 53^\circ } \right)$
$\therefore \sin 53^\circ = \cos \left( {90^\circ - 53^\circ } \right) = \cos 37^\circ $ .
Now, we will substitute the value of $\sin 53^\circ $ as $\cos 37^\circ $ in the given trigonometric fraction.
$\therefore \dfrac{{\cos 37^\circ }}{{\sin 53^\circ }} = \dfrac{{\cos 37^\circ }}{{\cos 37^\circ }} = 1$
Thus, we get the required value of the given trigonometric fraction $\dfrac{{\cos 37^\circ }}{{\sin 53^\circ }}$ as 1.
Note:
Alternatively, we can also write $\cos 37^\circ $ in the terms of the sine function by using the property $\cos y = \cos \left( {90^\circ - y} \right)$. Thus, by substituting the value of $\cos 37^\circ $ in terms of sine function in the given trigonometric fraction, we get the required answer.
Some angle properties of trigonometric functions:
1) $\sin x = \cos \left( {90^\circ - x} \right)$
2) $\cos x = \sin \left( {90^\circ - x} \right)$
3) $\tan x = \cot \left( {90^\circ - x} \right)$
4) $\sin x = \sin \left( {360^\circ + x} \right)$
5) $\cos x = \cos \left( {360^\circ + x} \right)$
6) $\tan x = \tan \left( {360^\circ + x} \right)$
Here, we are asked to find the value of the trigonometric fraction $\dfrac{{\cos 37^\circ }}{{\sin 53^\circ }}$.
Now, use the property $\sin x = \cos \left( {90^\circ - x} \right)$ and find the value of \[\sin 53^\circ \] in the terms of cosine function.
Thus, to get the required answer, substitute the value of \[\sin 53^\circ \] in terms of cosine function in the given trigonometric equation.
Complete step by step solution:
Here, we are asked to find the value of the trigonometric fraction $\dfrac{{\cos 37^\circ }}{{\sin 53^\circ }}$ .
We know the property that, $\sin x$ can also be written as $\cos \left( {90^\circ - x} \right)$ i.e. $\sin x = \cos \left( {90^\circ - x} \right)$ .
So, using the above property, we can write $\sin 53^\circ $ as $\cos \left( {90^\circ - 53^\circ } \right)$
$\therefore \sin 53^\circ = \cos \left( {90^\circ - 53^\circ } \right) = \cos 37^\circ $ .
Now, we will substitute the value of $\sin 53^\circ $ as $\cos 37^\circ $ in the given trigonometric fraction.
$\therefore \dfrac{{\cos 37^\circ }}{{\sin 53^\circ }} = \dfrac{{\cos 37^\circ }}{{\cos 37^\circ }} = 1$
Thus, we get the required value of the given trigonometric fraction $\dfrac{{\cos 37^\circ }}{{\sin 53^\circ }}$ as 1.
Note:
Alternatively, we can also write $\cos 37^\circ $ in the terms of the sine function by using the property $\cos y = \cos \left( {90^\circ - y} \right)$. Thus, by substituting the value of $\cos 37^\circ $ in terms of sine function in the given trigonometric fraction, we get the required answer.
Some angle properties of trigonometric functions:
1) $\sin x = \cos \left( {90^\circ - x} \right)$
2) $\cos x = \sin \left( {90^\circ - x} \right)$
3) $\tan x = \cot \left( {90^\circ - x} \right)$
4) $\sin x = \sin \left( {360^\circ + x} \right)$
5) $\cos x = \cos \left( {360^\circ + x} \right)$
6) $\tan x = \tan \left( {360^\circ + x} \right)$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

