Answer
Verified
459.6k+ views
Hint: Whenever we have a complex function, it is always easier to replace the function with some other simpler function so as to make the integration easier. In this question, we are going to replace the polynomial in the denominator with a simpler function and then integrate by substitution. We will also use the standard integral that $\int{\dfrac{dx}{x}=\log \left( x \right)+C}$.
Complete step-by-step solution
Let us rewrite the given integral in the following way,
$I=\int{\dfrac{dx}{x\left( {{x}^{3}}+8 \right)}=}\dfrac{dx}{{{x}^{4}}+8x}$
Now, on taking ${{x}^{4}}$ common from both the terms in the denominator, we will get that,
\[I=\int{\dfrac{dx}{{{x}^{4}}\left( 1+\dfrac{8}{{{x}^{3}}} \right)}.........}(i)\]
Now, let us consider $u=1+\dfrac{8}{{{x}^{3}}}$. On differentiating both the sides of $u=1+\dfrac{8}{{{x}^{3}}}$, we will get that $\dfrac{dx}{{{x}^{4}}}=-\dfrac{du}{24}$.
On replacing the values of the integral in equation (i) with the above-mentioned values, we will get as follows.
$I=\int{-\dfrac{1}{24}\dfrac{du}{u}}.........(ii)$
We can see that this is a standard integral, $\int{\dfrac{dx}{x}}$. And we already know that, $\int{\dfrac{dx}{x}=\log \left( x \right)+C}$.
So, on using this property in equation (ii), we will get that,
$I=-\dfrac{1}{24}\log \left( u \right)+C$
Now, on substituting back the value of $u=1+\dfrac{8}{{{x}^{3}}}$ in the above equation, we will get as follows.
$I=-\dfrac{1}{24}\log \left( 1+\dfrac{8}{{{x}^{3}}} \right)+C$
On simplifying it, we will get,
$I=-\dfrac{1}{24}\log \left( \dfrac{{{x}^{3}}+8}{{{x}^{3}}} \right)+C$
Therefore, we get the answer as, $-\dfrac{1}{24}\log \left( \dfrac{{{x}^{3}}+8}{{{x}^{3}}} \right)+C$
Note: While substituting the functions, one should always be careful while changing the differentials. And one should not forget the constant of integration as this is indefinite integration after all. Sometimes, the students forget the term $-\dfrac{1}{24}$ while changing the variables which might give you the wrong value of the integral.
Complete step-by-step solution
Let us rewrite the given integral in the following way,
$I=\int{\dfrac{dx}{x\left( {{x}^{3}}+8 \right)}=}\dfrac{dx}{{{x}^{4}}+8x}$
Now, on taking ${{x}^{4}}$ common from both the terms in the denominator, we will get that,
\[I=\int{\dfrac{dx}{{{x}^{4}}\left( 1+\dfrac{8}{{{x}^{3}}} \right)}.........}(i)\]
Now, let us consider $u=1+\dfrac{8}{{{x}^{3}}}$. On differentiating both the sides of $u=1+\dfrac{8}{{{x}^{3}}}$, we will get that $\dfrac{dx}{{{x}^{4}}}=-\dfrac{du}{24}$.
On replacing the values of the integral in equation (i) with the above-mentioned values, we will get as follows.
$I=\int{-\dfrac{1}{24}\dfrac{du}{u}}.........(ii)$
We can see that this is a standard integral, $\int{\dfrac{dx}{x}}$. And we already know that, $\int{\dfrac{dx}{x}=\log \left( x \right)+C}$.
So, on using this property in equation (ii), we will get that,
$I=-\dfrac{1}{24}\log \left( u \right)+C$
Now, on substituting back the value of $u=1+\dfrac{8}{{{x}^{3}}}$ in the above equation, we will get as follows.
$I=-\dfrac{1}{24}\log \left( 1+\dfrac{8}{{{x}^{3}}} \right)+C$
On simplifying it, we will get,
$I=-\dfrac{1}{24}\log \left( \dfrac{{{x}^{3}}+8}{{{x}^{3}}} \right)+C$
Therefore, we get the answer as, $-\dfrac{1}{24}\log \left( \dfrac{{{x}^{3}}+8}{{{x}^{3}}} \right)+C$
Note: While substituting the functions, one should always be careful while changing the differentials. And one should not forget the constant of integration as this is indefinite integration after all. Sometimes, the students forget the term $-\dfrac{1}{24}$ while changing the variables which might give you the wrong value of the integral.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE