Answer
Verified
449.1k+ views
Hint: Whenever we have a complex function, it is always easier to replace the function with some other simpler function so as to make the integration easier. In this question, we are going to replace the polynomial in the denominator with a simpler function and then integrate by substitution. We will also use the standard integral that $\int{\dfrac{dx}{x}=\log \left( x \right)+C}$.
Complete step-by-step solution
Let us rewrite the given integral in the following way,
$I=\int{\dfrac{dx}{x\left( {{x}^{3}}+8 \right)}=}\dfrac{dx}{{{x}^{4}}+8x}$
Now, on taking ${{x}^{4}}$ common from both the terms in the denominator, we will get that,
\[I=\int{\dfrac{dx}{{{x}^{4}}\left( 1+\dfrac{8}{{{x}^{3}}} \right)}.........}(i)\]
Now, let us consider $u=1+\dfrac{8}{{{x}^{3}}}$. On differentiating both the sides of $u=1+\dfrac{8}{{{x}^{3}}}$, we will get that $\dfrac{dx}{{{x}^{4}}}=-\dfrac{du}{24}$.
On replacing the values of the integral in equation (i) with the above-mentioned values, we will get as follows.
$I=\int{-\dfrac{1}{24}\dfrac{du}{u}}.........(ii)$
We can see that this is a standard integral, $\int{\dfrac{dx}{x}}$. And we already know that, $\int{\dfrac{dx}{x}=\log \left( x \right)+C}$.
So, on using this property in equation (ii), we will get that,
$I=-\dfrac{1}{24}\log \left( u \right)+C$
Now, on substituting back the value of $u=1+\dfrac{8}{{{x}^{3}}}$ in the above equation, we will get as follows.
$I=-\dfrac{1}{24}\log \left( 1+\dfrac{8}{{{x}^{3}}} \right)+C$
On simplifying it, we will get,
$I=-\dfrac{1}{24}\log \left( \dfrac{{{x}^{3}}+8}{{{x}^{3}}} \right)+C$
Therefore, we get the answer as, $-\dfrac{1}{24}\log \left( \dfrac{{{x}^{3}}+8}{{{x}^{3}}} \right)+C$
Note: While substituting the functions, one should always be careful while changing the differentials. And one should not forget the constant of integration as this is indefinite integration after all. Sometimes, the students forget the term $-\dfrac{1}{24}$ while changing the variables which might give you the wrong value of the integral.
Complete step-by-step solution
Let us rewrite the given integral in the following way,
$I=\int{\dfrac{dx}{x\left( {{x}^{3}}+8 \right)}=}\dfrac{dx}{{{x}^{4}}+8x}$
Now, on taking ${{x}^{4}}$ common from both the terms in the denominator, we will get that,
\[I=\int{\dfrac{dx}{{{x}^{4}}\left( 1+\dfrac{8}{{{x}^{3}}} \right)}.........}(i)\]
Now, let us consider $u=1+\dfrac{8}{{{x}^{3}}}$. On differentiating both the sides of $u=1+\dfrac{8}{{{x}^{3}}}$, we will get that $\dfrac{dx}{{{x}^{4}}}=-\dfrac{du}{24}$.
On replacing the values of the integral in equation (i) with the above-mentioned values, we will get as follows.
$I=\int{-\dfrac{1}{24}\dfrac{du}{u}}.........(ii)$
We can see that this is a standard integral, $\int{\dfrac{dx}{x}}$. And we already know that, $\int{\dfrac{dx}{x}=\log \left( x \right)+C}$.
So, on using this property in equation (ii), we will get that,
$I=-\dfrac{1}{24}\log \left( u \right)+C$
Now, on substituting back the value of $u=1+\dfrac{8}{{{x}^{3}}}$ in the above equation, we will get as follows.
$I=-\dfrac{1}{24}\log \left( 1+\dfrac{8}{{{x}^{3}}} \right)+C$
On simplifying it, we will get,
$I=-\dfrac{1}{24}\log \left( \dfrac{{{x}^{3}}+8}{{{x}^{3}}} \right)+C$
Therefore, we get the answer as, $-\dfrac{1}{24}\log \left( \dfrac{{{x}^{3}}+8}{{{x}^{3}}} \right)+C$
Note: While substituting the functions, one should always be careful while changing the differentials. And one should not forget the constant of integration as this is indefinite integration after all. Sometimes, the students forget the term $-\dfrac{1}{24}$ while changing the variables which might give you the wrong value of the integral.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE