Evaluate the following ${{i}^{403}}$
Answer
Verified
443.4k+ views
Hint: Now consider the given number ${{i}^{403}}$ we know that the value of ${{i}^{4}}=1$ and ${{i}^{3}}=-i$ hence we will first simplify the power and write the number in the form of ${{i}^{3}}$ and ${{i}^{4}}$ by using the laws of indices ${{x}^{m+n}}={{x}^{m}}{{x}^{n}}$ and ${{\left( {{x}^{m}} \right)}^{n}}={{x}^{mn}}$ . Now we will substitute the values of ${{i}^{3}}$ and ${{i}^{4}}$ and hence find the solution.
Complete step by step answer:
Now let us first understand the meaning of letter i.
Now we know the number line which represents real numbers which are either rational or irrational.
But there are also numbers which are not real. These numbers are called complex numbers.
Complex numbers are numbers of the form a + ib. where a and b are real and the letter i denotes iota which is nothing but $\sqrt{-1}$ .
Now since we have $i=\sqrt{-1}$ squaring both the sides we get ${{i}^{2}}=-1$
Now multiplying I on both sides we get, ${{i}^{3}}=-i$ again multiplying i on both sides we get, ${{i}^{4}}=-i\times i=-\left( -1 \right)=1$
Hence we can say that ${{i}^{4}}=1$
Now consider the given number ${{i}^{403}}$ .
Now we know by law of indices that ${{x}^{m+n}}={{x}^{m}}{{x}^{n}}$
Hence we can write
$\Rightarrow {{i}^{403}}={{i}^{400+3}}={{i}^{400}}{{i}^{3}}$
Now again by law of indices we know that ${{x}^{mn}}={{\left( {{x}^{m}} \right)}^{n}}$ hence using this we get,
$\Rightarrow {{i}^{403}}={{\left( {{i}^{4}} \right)}^{100}}{{i}^{3}}$
Now since ${{i}^{4}}=1$ and ${{i}^{3}}=-1$ we will substitute the values in the equation,
$\Rightarrow {{i}^{403}}={{1}^{100}}\left( -i \right)=-i$
Hence the value of ${{i}^{403}}$ is – i.
Note: Note that any power to i will be either of $-1,-i,1,i$ as after ${{i}^{4}}$ same values of I will keep repeating. Hence we can find any power of i by just using the laws of indices and the known values of i. Also note that here we also get 1 and -1 as solutions which means the square of a complex number is real. Hence we can say that multiplication of two complex numbers can be real numbers.
Complete step by step answer:
Now let us first understand the meaning of letter i.
Now we know the number line which represents real numbers which are either rational or irrational.
But there are also numbers which are not real. These numbers are called complex numbers.
Complex numbers are numbers of the form a + ib. where a and b are real and the letter i denotes iota which is nothing but $\sqrt{-1}$ .
Now since we have $i=\sqrt{-1}$ squaring both the sides we get ${{i}^{2}}=-1$
Now multiplying I on both sides we get, ${{i}^{3}}=-i$ again multiplying i on both sides we get, ${{i}^{4}}=-i\times i=-\left( -1 \right)=1$
Hence we can say that ${{i}^{4}}=1$
Now consider the given number ${{i}^{403}}$ .
Now we know by law of indices that ${{x}^{m+n}}={{x}^{m}}{{x}^{n}}$
Hence we can write
$\Rightarrow {{i}^{403}}={{i}^{400+3}}={{i}^{400}}{{i}^{3}}$
Now again by law of indices we know that ${{x}^{mn}}={{\left( {{x}^{m}} \right)}^{n}}$ hence using this we get,
$\Rightarrow {{i}^{403}}={{\left( {{i}^{4}} \right)}^{100}}{{i}^{3}}$
Now since ${{i}^{4}}=1$ and ${{i}^{3}}=-1$ we will substitute the values in the equation,
$\Rightarrow {{i}^{403}}={{1}^{100}}\left( -i \right)=-i$
Hence the value of ${{i}^{403}}$ is – i.
Note: Note that any power to i will be either of $-1,-i,1,i$ as after ${{i}^{4}}$ same values of I will keep repeating. Hence we can find any power of i by just using the laws of indices and the known values of i. Also note that here we also get 1 and -1 as solutions which means the square of a complex number is real. Hence we can say that multiplication of two complex numbers can be real numbers.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE