Answer
Verified
497.1k+ views
Hint: Convert the given integral to ‘sin’ and ‘cos’ functions, now divide numerator and denominator by ${{\cos }^{4}}x$ . Later solve the integral to get the answer.
Complete step-by-step answer:
Here, integral given is
$\int{{{\sec }^{2}}x{{\csc }^{2}}xdx}$
Let given integral be I, hence
$I=\int{{{\sec }^{2}}x{{\csc }^{2}}xdx}$……………(i)
We know,
$\sec x=\dfrac{1}{\cos x}$ and $cscx=\dfrac{1}{\sin x}$
Hence, I can be written as
$I=\int{\dfrac{1}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$
Now, let us convert the given integral to $\sec x$ and $\tan x$ by dividing the numerator and denominator \[{{\cos }^{4}}x\]and using the relation $\tan x=\dfrac{\sin x}{\cos x}$ .
Hence, we get
$I=\int{\dfrac{\dfrac{1}{{{\cos }^{4}}x}}{\dfrac{{{\sin }^{2}}x{{\cos }^{2}}x}{{{\cos }^{4}}x}}}dx=\int{\dfrac{{{\sec }^{4}}x}{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}\dfrac{{{\cos }^{2}}x}{{{\cos }^{2}}x}}}dx$
$I=\int{\dfrac{{{\sec }^{4}}x}{{{\tan }^{2}}x}}dx$
Or
$I=\int{\dfrac{{{\sec }^{2}}x{{\sec }^{2}}x}{{{\tan }^{2}}x}}dx$
Now, we can convert one \['{{\sec }^{2}}x'\] to \['1+{{\tan }^{2}}x'\] in numerator by using trigonometric identity given, so the above expression can be written as,
\[I=\int{\dfrac{(1+ta{{n}^{2}}x)se{{c}^{2}}x}{{{\tan }^{2}}x}}dx\]…………………. (ii)
Now, we can suppose ‘tan x’ as ‘t’ and get derivative of it as ‘${{\sec }^{2}}x$’ so that
We can get an integral in ‘x’ only.
Let $t=\tan x$
Differentiating both sides w.r.t ‘x’, we get
As we know $\dfrac{d}{dx}(tanx)=se{{c}^{2}}x$, the above expression can be written as,
$\dfrac{dt}{dx}=se{{c}^{2}}x$
Now, cross multiplying above equation, we get
$dt={{\sec }^{2}}xdx$
Hence, integral ‘I’ can be re-written in terms of ‘t’ as
$I=\int{\dfrac{1+{{t}^{2}}}{{{t}^{2}}}}dt=\int{\left( \dfrac{1}{{{t}^{2}}}+\dfrac{{{t}^{2}}}{{{t}^{2}}} \right)}dt$
or
$I=\int{\left( \dfrac{1}{{{t}^{2}}}+1 \right)}dt$
Now we know that
$\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}$
Hence, integral can be simplified as
$I=\int{{{t}^{-{{2}^{{}}}}}dt+\int{{{t}^{o}}dt}}$
Using the above identity of integral, we get
$I=\dfrac{{{t}^{-2+1}}}{-2+1}+\dfrac{{{t}^{o+1}}}{0+1}+c$
$I=\dfrac{{{t}^{-1}}}{-1}+\dfrac{{{t}^{1}}}{1}+c$
Or
$I=\dfrac{-1}{t}+t+c$
Now, putting value of t as $\tan x$ in the above equation, we can get value of I as
$I=\dfrac{-1}{\operatorname{tanx}}+\tan x+c$
Hence,
$\int{{{\sec }^{2}}{{\csc }^{2}}xdx=\dfrac{-1}{\tan x}+\tan x+c}$
Note: Diving numerator and denominator by${{\cos }^{4}}x$ of integral $\int{\dfrac{1}{{{\sin }^{2}}xco{{s}^{2}}x}}$ is the key point of the solution. Try to convert these kind of questions to $\tan x$ and ${{\sec }^{2}}x$ if power of $\sin x$ and $\cos x$ are even so that we can always substitute $\tan x$ and get derivative as ${{\sec }^{2}}x$.
Another approach for the given integration would be that we can convert ${{\sec }^{2}}x$ to $1+{{\tan }^{2}}x$, then $\tan x$ to $\dfrac{1}{\cot x}$, Now, suppose $\cot x=t$ expression would be
$\int{\left( 1+\dfrac{1}{{{\cot }^{2}}x} \right)}{{\csc }^{2}}xdx$ and solve accordingly.
Complete step-by-step answer:
Here, integral given is
$\int{{{\sec }^{2}}x{{\csc }^{2}}xdx}$
Let given integral be I, hence
$I=\int{{{\sec }^{2}}x{{\csc }^{2}}xdx}$……………(i)
We know,
$\sec x=\dfrac{1}{\cos x}$ and $cscx=\dfrac{1}{\sin x}$
Hence, I can be written as
$I=\int{\dfrac{1}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$
Now, let us convert the given integral to $\sec x$ and $\tan x$ by dividing the numerator and denominator \[{{\cos }^{4}}x\]and using the relation $\tan x=\dfrac{\sin x}{\cos x}$ .
Hence, we get
$I=\int{\dfrac{\dfrac{1}{{{\cos }^{4}}x}}{\dfrac{{{\sin }^{2}}x{{\cos }^{2}}x}{{{\cos }^{4}}x}}}dx=\int{\dfrac{{{\sec }^{4}}x}{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}\dfrac{{{\cos }^{2}}x}{{{\cos }^{2}}x}}}dx$
$I=\int{\dfrac{{{\sec }^{4}}x}{{{\tan }^{2}}x}}dx$
Or
$I=\int{\dfrac{{{\sec }^{2}}x{{\sec }^{2}}x}{{{\tan }^{2}}x}}dx$
Now, we can convert one \['{{\sec }^{2}}x'\] to \['1+{{\tan }^{2}}x'\] in numerator by using trigonometric identity given, so the above expression can be written as,
\[I=\int{\dfrac{(1+ta{{n}^{2}}x)se{{c}^{2}}x}{{{\tan }^{2}}x}}dx\]…………………. (ii)
Now, we can suppose ‘tan x’ as ‘t’ and get derivative of it as ‘${{\sec }^{2}}x$’ so that
We can get an integral in ‘x’ only.
Let $t=\tan x$
Differentiating both sides w.r.t ‘x’, we get
As we know $\dfrac{d}{dx}(tanx)=se{{c}^{2}}x$, the above expression can be written as,
$\dfrac{dt}{dx}=se{{c}^{2}}x$
Now, cross multiplying above equation, we get
$dt={{\sec }^{2}}xdx$
Hence, integral ‘I’ can be re-written in terms of ‘t’ as
$I=\int{\dfrac{1+{{t}^{2}}}{{{t}^{2}}}}dt=\int{\left( \dfrac{1}{{{t}^{2}}}+\dfrac{{{t}^{2}}}{{{t}^{2}}} \right)}dt$
or
$I=\int{\left( \dfrac{1}{{{t}^{2}}}+1 \right)}dt$
Now we know that
$\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}$
Hence, integral can be simplified as
$I=\int{{{t}^{-{{2}^{{}}}}}dt+\int{{{t}^{o}}dt}}$
Using the above identity of integral, we get
$I=\dfrac{{{t}^{-2+1}}}{-2+1}+\dfrac{{{t}^{o+1}}}{0+1}+c$
$I=\dfrac{{{t}^{-1}}}{-1}+\dfrac{{{t}^{1}}}{1}+c$
Or
$I=\dfrac{-1}{t}+t+c$
Now, putting value of t as $\tan x$ in the above equation, we can get value of I as
$I=\dfrac{-1}{\operatorname{tanx}}+\tan x+c$
Hence,
$\int{{{\sec }^{2}}{{\csc }^{2}}xdx=\dfrac{-1}{\tan x}+\tan x+c}$
Note: Diving numerator and denominator by${{\cos }^{4}}x$ of integral $\int{\dfrac{1}{{{\sin }^{2}}xco{{s}^{2}}x}}$ is the key point of the solution. Try to convert these kind of questions to $\tan x$ and ${{\sec }^{2}}x$ if power of $\sin x$ and $\cos x$ are even so that we can always substitute $\tan x$ and get derivative as ${{\sec }^{2}}x$.
Another approach for the given integration would be that we can convert ${{\sec }^{2}}x$ to $1+{{\tan }^{2}}x$, then $\tan x$ to $\dfrac{1}{\cot x}$, Now, suppose $\cot x=t$ expression would be
$\int{\left( 1+\dfrac{1}{{{\cot }^{2}}x} \right)}{{\csc }^{2}}xdx$ and solve accordingly.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE