Answer
Verified
498.3k+ views
Hint: Use the properties of definite integrals, that is, \[\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } \] and simplify the expression to obtain the desired result.
Complete step-by-step answer:
Let us assign the integral to a variable I.
\[I = \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} ..........(1)\]
We know the formula for definite integral as follows:
\[\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } .........(2)\]
Here, \[f(x) = \dfrac{x}{{1 + \cos \alpha \sin x}}\] and a = \[\pi \].
Hence, using formula in equation (2) to simplify equation (1), we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin (\pi - x)}}} \]
We know that \[\sin (\pi - x) = \sin x\], sine is positive in the second quadrant. Hence, we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin x}}} \]
Expanding the numerator, we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} \]
The second term in the expression is nothing but I itself, hence, using equation(1), we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - I\]
Solving for I, we get:
\[2I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} \]
\[I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(3)\]
Let us consider the integral term alone in equation (3).
\[I' = \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(4)\]
Now, we know that, \[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\], using this formula for sin(x) in equation (4), we get:
\[I' = \int_0^\pi {\dfrac{{\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx}}{{1 + {{\tan }^2}\dfrac{x}{2} + \cos \alpha .2\tan \dfrac{x}{2}}}} ........(5)\]
Let us use substitution of variables as follows:
\[\tan \dfrac{x}{2} = \theta \]
\[{\sec ^2}\dfrac{x}{2}.\dfrac{1}{2}.dx = d\theta \]
\[\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx = 2d\theta \]
The limits also change as follows:
\[x \to 0 \Rightarrow \theta \to 0\]
\[x \to \pi \Rightarrow \theta \to \infty \]
Using all this changes in equation (5), we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{1 + {\theta ^2} + 2\theta \cos \alpha }}} \]
Expressing the denominator as sum of squares using completing square method, we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{{{(\theta + \cos \alpha )}^2} + (1 - {{\cos }^2}\alpha )}}} \]
We know that \[1 - {\cos ^2}x = {\sin ^2}x\], hence we have:
\[I' = 2\int_0^\infty {\dfrac{{d\theta }}{{{{(\theta + \cos \alpha )}^2} + {{\sin }^2}\alpha }}} \]
We know that \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \], hence we have:
\[I' = \left. {\dfrac{2}{{\sin \alpha }}{{\tan }^{ - 1}}\left( {\dfrac{{\theta + \cos \alpha }}{{\sin \alpha }}} \right)} \right|_0^\infty \]
Evaluating the limits, we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right)\]
We know that, \[\dfrac{{\cos \alpha }}{{\sin \alpha }} = \cot \alpha \], hence we get:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\cot \alpha } \right)} \right)\]
We also know that, \[{\tan ^{ - 1}}\left( \infty \right) = \dfrac{\pi }{2}\] and \[\cot \alpha = \tan \left( {\dfrac{\pi }{2} - \alpha } \right)\], hence we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)} \right)\]
Since, \[{\tan ^{ - 1}}\left( {\tan \left( x \right)} \right) = x\], we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)\]
Simplifying, we get:
\[I' = \dfrac{{2\alpha }}{{\sin \alpha }}.........(6)\]
Using equation (6) in equation (3), we get:
\[I = \dfrac{\pi }{2} \times \dfrac{{2\alpha }}{{\sin \alpha }}\]
\[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\]
Hence, the value of the integral is \[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\].
Note: You might make mistake in the integration of \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \] formula by missing out the \[\dfrac{1}{a}\] term. It is necessary to simplify the integral completely and not leave the answer in terms of \[{\tan ^{ - 1}}(\cot \alpha )\].
Complete step-by-step answer:
Let us assign the integral to a variable I.
\[I = \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} ..........(1)\]
We know the formula for definite integral as follows:
\[\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } .........(2)\]
Here, \[f(x) = \dfrac{x}{{1 + \cos \alpha \sin x}}\] and a = \[\pi \].
Hence, using formula in equation (2) to simplify equation (1), we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin (\pi - x)}}} \]
We know that \[\sin (\pi - x) = \sin x\], sine is positive in the second quadrant. Hence, we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin x}}} \]
Expanding the numerator, we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} \]
The second term in the expression is nothing but I itself, hence, using equation(1), we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - I\]
Solving for I, we get:
\[2I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} \]
\[I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(3)\]
Let us consider the integral term alone in equation (3).
\[I' = \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(4)\]
Now, we know that, \[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\], using this formula for sin(x) in equation (4), we get:
\[I' = \int_0^\pi {\dfrac{{\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx}}{{1 + {{\tan }^2}\dfrac{x}{2} + \cos \alpha .2\tan \dfrac{x}{2}}}} ........(5)\]
Let us use substitution of variables as follows:
\[\tan \dfrac{x}{2} = \theta \]
\[{\sec ^2}\dfrac{x}{2}.\dfrac{1}{2}.dx = d\theta \]
\[\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx = 2d\theta \]
The limits also change as follows:
\[x \to 0 \Rightarrow \theta \to 0\]
\[x \to \pi \Rightarrow \theta \to \infty \]
Using all this changes in equation (5), we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{1 + {\theta ^2} + 2\theta \cos \alpha }}} \]
Expressing the denominator as sum of squares using completing square method, we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{{{(\theta + \cos \alpha )}^2} + (1 - {{\cos }^2}\alpha )}}} \]
We know that \[1 - {\cos ^2}x = {\sin ^2}x\], hence we have:
\[I' = 2\int_0^\infty {\dfrac{{d\theta }}{{{{(\theta + \cos \alpha )}^2} + {{\sin }^2}\alpha }}} \]
We know that \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \], hence we have:
\[I' = \left. {\dfrac{2}{{\sin \alpha }}{{\tan }^{ - 1}}\left( {\dfrac{{\theta + \cos \alpha }}{{\sin \alpha }}} \right)} \right|_0^\infty \]
Evaluating the limits, we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right)\]
We know that, \[\dfrac{{\cos \alpha }}{{\sin \alpha }} = \cot \alpha \], hence we get:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\cot \alpha } \right)} \right)\]
We also know that, \[{\tan ^{ - 1}}\left( \infty \right) = \dfrac{\pi }{2}\] and \[\cot \alpha = \tan \left( {\dfrac{\pi }{2} - \alpha } \right)\], hence we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)} \right)\]
Since, \[{\tan ^{ - 1}}\left( {\tan \left( x \right)} \right) = x\], we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)\]
Simplifying, we get:
\[I' = \dfrac{{2\alpha }}{{\sin \alpha }}.........(6)\]
Using equation (6) in equation (3), we get:
\[I = \dfrac{\pi }{2} \times \dfrac{{2\alpha }}{{\sin \alpha }}\]
\[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\]
Hence, the value of the integral is \[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\].
Note: You might make mistake in the integration of \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \] formula by missing out the \[\dfrac{1}{a}\] term. It is necessary to simplify the integral completely and not leave the answer in terms of \[{\tan ^{ - 1}}(\cot \alpha )\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE