Answer
Verified
500.1k+ views
Hint: To solve this question substitute value of $1-{{\tan }^{2}}x=t$
We have the given integral as $I=\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}dx}..........\left( 1 \right)$
Here, we can use substitute method for finding/solving the given integral in a proper way:
Let $t=1-{{\tan }^{2}}x$
Differentiating both sides with respect to $x$
$t=1-{{\tan }^{2}}x$
$\dfrac{dt}{dx}=-2\tan x{{\sec }^{2}}x$ $\left( \dfrac{d}{dx}\left( \tan x
\right)\ And -{{\sec }^{2}}x \right)$ chain rule is applied
$dt=-2\tan x{{\sec }^{2}}xdx.............\left( 2 \right)$
From the equation $\left( 1 \right)\And \left( 2 \right)$; we can replace $\tan x{{\sec }^{2}}xdx$ by
above equation $\left( 2 \right)$ as
$\tan x{{\sec }^{2}}xdx=\dfrac{-dt}{2}$
Hence, equation $\left( 1 \right)$ will become
$I=\int{\dfrac{-1}{2}\sqrt{t}dt}$ as $\left( 1-{{\tan }^{2}}x=t \right)$
\[\begin{align}
& I=\dfrac{-1}{2}\int{{{t}^{\dfrac{1}{2}}}}dt \\
& I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}+C\text{
} as \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}} \\
\end{align}\]
\[I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}+C=\dfrac{-1}{2}\times
\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}+C\]
\[\begin{align}
& I=\dfrac{-1}{3}{{t}^{\dfrac{3}{2}}}+C \\
& \text{As }t=1-{{\tan }^{2}}x \\
& I=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x \right)}^{\dfrac{3}{2}}}+C \\
\end{align}\]
Hence,
$\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}}dx=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x
\right)}^{\dfrac{3}{2}}}+C$
Note: One can substitute
$t=\tan x$
Hence $dt={{\sec }^{2}}xdx$ and then can put value in integral.
Therefore $I=\int{t\sqrt{1-{{t}^{2}}}dt}$
Now, he/she needs to put ${{t}^{2}}=y\And 1-{{t}^{2}}=y$ to solve the above integral.
Hence, it takes one more step than the solution provided but the answer will be the same.
One can convert $\tan x\And {{\sec }^{2}}x$ to cosine and sine forms which students do
generally will take more time as well.
We have the given integral as $I=\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}dx}..........\left( 1 \right)$
Here, we can use substitute method for finding/solving the given integral in a proper way:
Let $t=1-{{\tan }^{2}}x$
Differentiating both sides with respect to $x$
$t=1-{{\tan }^{2}}x$
$\dfrac{dt}{dx}=-2\tan x{{\sec }^{2}}x$ $\left( \dfrac{d}{dx}\left( \tan x
\right)\ And -{{\sec }^{2}}x \right)$ chain rule is applied
$dt=-2\tan x{{\sec }^{2}}xdx.............\left( 2 \right)$
From the equation $\left( 1 \right)\And \left( 2 \right)$; we can replace $\tan x{{\sec }^{2}}xdx$ by
above equation $\left( 2 \right)$ as
$\tan x{{\sec }^{2}}xdx=\dfrac{-dt}{2}$
Hence, equation $\left( 1 \right)$ will become
$I=\int{\dfrac{-1}{2}\sqrt{t}dt}$ as $\left( 1-{{\tan }^{2}}x=t \right)$
\[\begin{align}
& I=\dfrac{-1}{2}\int{{{t}^{\dfrac{1}{2}}}}dt \\
& I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}+C\text{
} as \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}} \\
\end{align}\]
\[I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}+C=\dfrac{-1}{2}\times
\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}+C\]
\[\begin{align}
& I=\dfrac{-1}{3}{{t}^{\dfrac{3}{2}}}+C \\
& \text{As }t=1-{{\tan }^{2}}x \\
& I=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x \right)}^{\dfrac{3}{2}}}+C \\
\end{align}\]
Hence,
$\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}}dx=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x
\right)}^{\dfrac{3}{2}}}+C$
Note: One can substitute
$t=\tan x$
Hence $dt={{\sec }^{2}}xdx$ and then can put value in integral.
Therefore $I=\int{t\sqrt{1-{{t}^{2}}}dt}$
Now, he/she needs to put ${{t}^{2}}=y\And 1-{{t}^{2}}=y$ to solve the above integral.
Hence, it takes one more step than the solution provided but the answer will be the same.
One can convert $\tan x\And {{\sec }^{2}}x$ to cosine and sine forms which students do
generally will take more time as well.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE