
Evaluate the following: \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}\].
Answer
623.1k+ views
Hint: Transform the whole equation in terms of \[\sin \theta \]and \[\cos \theta \].
We have to evaluate: \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}...\left( i \right)\]
We know that \[\sin \theta =\dfrac{1}{\text{cosec}\theta }\]and \[\cos \theta =\dfrac{1}{\text{sec}\theta
}\].
Therefore, \[\sec {{50}^{o}}=\dfrac{1}{\cos {{50}^{o}}}\]and
\[\operatorname{cosec}{{50}^{o}}=\dfrac{1}{\sin {{50}^{o}}}\]
Now, we will put these values in equation \[\left( i \right)\].
\[=\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\operatorname{cosec}{{50}^{o}}\]
We get, \[\dfrac{\sin {{40}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}....\left( ii \right)\]
Now, we know that \[\sin \left( {{90}^{o}}-\theta \right)=\cos \theta \]
For \[\theta ={{50}^{o}}\]
We get \[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
\[\Rightarrow \sin {{40}^{o}}=\cos {{50}^{o}}\]
For \[\theta ={{40}^{o}}\]
We get \[\sin \left( 90-{{40}^{o}} \right)=\cos {{40}^{o}}\]
\[\Rightarrow \sin {{50}^{o}}=\cos {{40}^{o}}\]
Putting the values of \[\sin {{40}^{o}}\]and \[\cos {{50}^{o}}\]in equation \[\left( ii \right)\].
We get, \[\dfrac{\cos {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\cos {{40}^{o}}}\]
By cancelling the terms, we get
\[=1+1\]
\[=2\]
Hence, we get \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}=2\].
Note: This question can also be easily solved by converting \[\sec \left( 90-\theta \right)\]to
\[\operatorname{cosec}\theta \]and \[\operatorname{cosec}\left( 90-\theta \right)\]to\[\sec \theta \]as follows:
\[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}....\left( i \right)\]
We know that \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
For \[\theta ={{40}^{o}}\], we get \[\sec \left( {{90}^{o}}-{{40}^{o}}
\right)=\operatorname{cosec}{{40}^{o}}\]
Therefore, \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\]
Also, we know that \[\operatorname{cosec}\left( {{90}^{o}}-\theta \right)=\sec \theta \]
For \[\theta ={{40}^{o}}\], we get \[\operatorname{cosec}\left( {{90}^{o}}-{{40}^{o}}
\right)=sec{{40}^{o}}\]
Therefore, \[\operatorname{cosec}{{50}^{o}}=sec{{40}^{o}}\]
Now, we put values of \[\sec \left( {{50}^{o}} \right)\]and \[\operatorname{cosec}\left( {{50}^{o}}
\right)\]in equation \[\left( i \right)\].
We get, \[\operatorname{cosec}{{40}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\sec {{40}^{o}}\]
We know that \[\operatorname{cosec}\theta .\sin \theta =1\]and \[\cos \theta .\sec \theta =1\]
By putting it in above equation,
We get, \[1+1=2\]which is our required answer.
We have to evaluate: \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}...\left( i \right)\]
We know that \[\sin \theta =\dfrac{1}{\text{cosec}\theta }\]and \[\cos \theta =\dfrac{1}{\text{sec}\theta
}\].
Therefore, \[\sec {{50}^{o}}=\dfrac{1}{\cos {{50}^{o}}}\]and
\[\operatorname{cosec}{{50}^{o}}=\dfrac{1}{\sin {{50}^{o}}}\]
Now, we will put these values in equation \[\left( i \right)\].
\[=\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\operatorname{cosec}{{50}^{o}}\]
We get, \[\dfrac{\sin {{40}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}....\left( ii \right)\]
Now, we know that \[\sin \left( {{90}^{o}}-\theta \right)=\cos \theta \]
For \[\theta ={{50}^{o}}\]
We get \[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
\[\Rightarrow \sin {{40}^{o}}=\cos {{50}^{o}}\]
For \[\theta ={{40}^{o}}\]
We get \[\sin \left( 90-{{40}^{o}} \right)=\cos {{40}^{o}}\]
\[\Rightarrow \sin {{50}^{o}}=\cos {{40}^{o}}\]
Putting the values of \[\sin {{40}^{o}}\]and \[\cos {{50}^{o}}\]in equation \[\left( ii \right)\].
We get, \[\dfrac{\cos {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\cos {{40}^{o}}}\]
By cancelling the terms, we get
\[=1+1\]
\[=2\]
Hence, we get \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}=2\].
Note: This question can also be easily solved by converting \[\sec \left( 90-\theta \right)\]to
\[\operatorname{cosec}\theta \]and \[\operatorname{cosec}\left( 90-\theta \right)\]to\[\sec \theta \]as follows:
\[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}....\left( i \right)\]
We know that \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
For \[\theta ={{40}^{o}}\], we get \[\sec \left( {{90}^{o}}-{{40}^{o}}
\right)=\operatorname{cosec}{{40}^{o}}\]
Therefore, \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\]
Also, we know that \[\operatorname{cosec}\left( {{90}^{o}}-\theta \right)=\sec \theta \]
For \[\theta ={{40}^{o}}\], we get \[\operatorname{cosec}\left( {{90}^{o}}-{{40}^{o}}
\right)=sec{{40}^{o}}\]
Therefore, \[\operatorname{cosec}{{50}^{o}}=sec{{40}^{o}}\]
Now, we put values of \[\sec \left( {{50}^{o}} \right)\]and \[\operatorname{cosec}\left( {{50}^{o}}
\right)\]in equation \[\left( i \right)\].
We get, \[\operatorname{cosec}{{40}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\sec {{40}^{o}}\]
We know that \[\operatorname{cosec}\theta .\sin \theta =1\]and \[\cos \theta .\sec \theta =1\]
By putting it in above equation,
We get, \[1+1=2\]which is our required answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

