Evaluate the left hand and right hand limits of the function\[f(x)=\left\{ \begin{matrix} \dfrac{\sqrt{({{x}^{2}}-6x+9)}}{(x-3)},x\ne 3 \\ 0,x=3 \\
\end{matrix}\text{ at }x=3. \right.\]
Answer
Verified
504k+ views
Hint: For finding out whether the limit exists, then we should find the left hand limit and right hand limit. If they are equal then the limit exists.
Complete step-by-step answer:
First we will simplify the given function, that is,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-6x+9}}{x-3}$
The numerator consists of a quadratic equation, now we will simplify it as follows,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-3x-3x+9}}{x-3}$
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{x(x-3)-3(x-3)}}{(x-3)}$
\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{(x-3)(x-3)}}{(x-3)}\]
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{(x-3)}^{2}}}}{(x-3)}$
We know, $\sqrt{4}=\pm 2$ , so the above equation can be written as,
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left| x-3 \right|}{(x-3)}.......(i)$
Now the modulus can be split as following,
$f(x)=\left\{ \begin{matrix}
\dfrac{x-3}{x-3},x>0 \\
\dfrac{-(x-3)}{x-3},x<0 \\
\end{matrix} \right.$
Now we will find the left hand limit, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{-(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=-1$
So, the left hand limit of the given function is $'-1'$.
Now we will find the right hand limit, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=1$
So, the right hand limit of the given function is $'1'$.
So the left hand limit and the right hand limit are not equal hence the $\underset{x\to 3}{\mathop{\lim }}\,f(x)\text{ }$does not exist.
Note: Generally these questions are asked in competitive examinations for confusing students. Instead of solving and then finding the left hand limit and right hand limit. We can directly apply the \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,g(x)=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{g(0+h)-g(0)}{h}\], this formula, but it will be complicated process.
Complete step-by-step answer:
First we will simplify the given function, that is,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-6x+9}}{x-3}$
The numerator consists of a quadratic equation, now we will simplify it as follows,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-3x-3x+9}}{x-3}$
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{x(x-3)-3(x-3)}}{(x-3)}$
\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{(x-3)(x-3)}}{(x-3)}\]
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{(x-3)}^{2}}}}{(x-3)}$
We know, $\sqrt{4}=\pm 2$ , so the above equation can be written as,
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left| x-3 \right|}{(x-3)}.......(i)$
Now the modulus can be split as following,
$f(x)=\left\{ \begin{matrix}
\dfrac{x-3}{x-3},x>0 \\
\dfrac{-(x-3)}{x-3},x<0 \\
\end{matrix} \right.$
Now we will find the left hand limit, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{-(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=-1$
So, the left hand limit of the given function is $'-1'$.
Now we will find the right hand limit, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=1$
So, the right hand limit of the given function is $'1'$.
So the left hand limit and the right hand limit are not equal hence the $\underset{x\to 3}{\mathop{\lim }}\,f(x)\text{ }$does not exist.
Note: Generally these questions are asked in competitive examinations for confusing students. Instead of solving and then finding the left hand limit and right hand limit. We can directly apply the \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,g(x)=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{g(0+h)-g(0)}{h}\], this formula, but it will be complicated process.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE