Answer
Verified
453k+ views
Hint: We know a formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and here, we have to evaluate the value of $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$ which resembles with the right hand side of the above written formula. So, we can apply the above given formula to find the required value of the above given question.
Complete step-by-step solution:
Here, the given expression is $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$.
We know a formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
And when we compare the right hand side of the above given formula with the given expression in above question. We get, $A = 3{6^ \circ }$ and $B = {9^ \circ }$.
So, by applying above formula we can write $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$ as $\sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$.
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin {45^ \circ }$
By using the trigonometry table we can find the value of $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$.
So, the value of $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$is $\dfrac{1}{{\sqrt 2 }}$.
Thus, option (B) is correct.
Note: Similarly, some important formulae which may be used to solve similar types of problems.
(1) $\sin \left( {A - B} \right) = \sin A\cos B - \cos B\sin A$ .
(2) $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$.
(3) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$.
While applying these formulae firstly we have to make sure that the given expression must resemble the right side of the above given formulae. After this we have to find the value of $\cos ine$ and $\sin $ of some angles and that value can be found by using a trigonometry table.
If the above problem is modified as $\sin {36^ \circ }\cos {9^ \circ } - \cos {36^ \circ }\sin {9^ \circ }$ then we have to apply the first formula given in the hint section.
Similarly, we can apply a second formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } - \sin {36^ \circ }\sin {9^ \circ }$.
Similarly, we can apply a third formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } + \sin {36^ \circ }\sin {9^ \circ }$.
Complete step-by-step solution:
Here, the given expression is $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$.
We know a formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
And when we compare the right hand side of the above given formula with the given expression in above question. We get, $A = 3{6^ \circ }$ and $B = {9^ \circ }$.
So, by applying above formula we can write $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$ as $\sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$.
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin \left( {{{36}^ \circ } + {9^ \circ }} \right)$
$ \Rightarrow \sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ } = \sin {45^ \circ }$
By using the trigonometry table we can find the value of $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$.
So, the value of $\sin {36^ \circ }\cos {9^ \circ } + \cos {36^ \circ }\sin {9^ \circ }$is $\dfrac{1}{{\sqrt 2 }}$.
Thus, option (B) is correct.
Note: Similarly, some important formulae which may be used to solve similar types of problems.
(1) $\sin \left( {A - B} \right) = \sin A\cos B - \cos B\sin A$ .
(2) $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$.
(3) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$.
While applying these formulae firstly we have to make sure that the given expression must resemble the right side of the above given formulae. After this we have to find the value of $\cos ine$ and $\sin $ of some angles and that value can be found by using a trigonometry table.
If the above problem is modified as $\sin {36^ \circ }\cos {9^ \circ } - \cos {36^ \circ }\sin {9^ \circ }$ then we have to apply the first formula given in the hint section.
Similarly, we can apply a second formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } - \sin {36^ \circ }\sin {9^ \circ }$.
Similarly, we can apply a third formula when we have to evaluate the value of mathematical expressions like $\cos {36^ \circ }\cos {9^ \circ } + \sin {36^ \circ }\sin {9^ \circ }$.
Recently Updated Pages
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
The following compounds can be distinguished by class 12 chemistry JEE_Main
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE