Answer
Verified
459.3k+ views
Hint: Start by writing down the given equation . Try to recall all the values of trigonometric ratios for corresponding angles and substitute in the given equation. Simplify the equation in order to get the desired value for the given equation.
Complete step-by-step answer:
Given,
$\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$
Step by step complete solution
We know the values of following trigonometric ratios
From the above table we get
$\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}$ and $\sin {30^ \circ } = \dfrac{1}{2}$
$\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$ and $\cos {60^ \circ } = \dfrac{1}{2}$
Substituting these values in the relation we get
$
\Rightarrow \sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ } \\
\Rightarrow \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2} \\
\\
$
We know $\sqrt 3 \times \sqrt 3 = {(\sqrt 3 )^2} = 3$
Similarly in denominator ,we have $2 \times 2 = {(2)^2} = 4$
$ = \dfrac{3}{4} + \dfrac{1}{4}$
Taking 4 as L.C.M. , we get
$
= \dfrac{4}{4} \\
= 1 \\
$
So , the value of $\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$ is 1.
Note: Students must remember all the trigonometric values of different angles , which are used more often. Attention must be given while substituting the values , keeping in mind the quadrant system, here we had all the positive values only , But one might get different quadrant values as well.
Alternative method:-
We can simplify the given trigonometric equation by using trigonometric formulas
We have $\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$
This is of the form $\sin A\cos B + \cos A\sin B$
And we know $\sin (A + B) = \sin A\cos B + \cos A\sin B$
So our equation $\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$would become
$\sin {(60 + 30)^ \circ } = \sin {90^ \circ }$
And we know the value of $\sin {90^ \circ } = 1$from the table of trigonometric values for different angles.
Therefore , the value of $\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$ is 1.
Complete step-by-step answer:
Given,
$\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$
Step by step complete solution
We know the values of following trigonometric ratios
$\theta $ | ${0^ \circ }$ | ${30^ \circ }$ | ${45^ \circ }$ | ${60^ \circ }$ | ${90^ \circ }$ |
$\sin \theta $ | $0$ | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | $1$ |
$\cos \theta $ | $1$ | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | $0$ |
From the above table we get
$\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}$ and $\sin {30^ \circ } = \dfrac{1}{2}$
$\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$ and $\cos {60^ \circ } = \dfrac{1}{2}$
Substituting these values in the relation we get
$
\Rightarrow \sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ } \\
\Rightarrow \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2} \\
\\
$
We know $\sqrt 3 \times \sqrt 3 = {(\sqrt 3 )^2} = 3$
Similarly in denominator ,we have $2 \times 2 = {(2)^2} = 4$
$ = \dfrac{3}{4} + \dfrac{1}{4}$
Taking 4 as L.C.M. , we get
$
= \dfrac{4}{4} \\
= 1 \\
$
So , the value of $\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$ is 1.
Note: Students must remember all the trigonometric values of different angles , which are used more often. Attention must be given while substituting the values , keeping in mind the quadrant system, here we had all the positive values only , But one might get different quadrant values as well.
Alternative method:-
We can simplify the given trigonometric equation by using trigonometric formulas
We have $\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$
This is of the form $\sin A\cos B + \cos A\sin B$
And we know $\sin (A + B) = \sin A\cos B + \cos A\sin B$
So our equation $\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$would become
$\sin {(60 + 30)^ \circ } = \sin {90^ \circ }$
And we know the value of $\sin {90^ \circ } = 1$from the table of trigonometric values for different angles.
Therefore , the value of $\sin {60^ \circ }\cos {30^ \circ } + \cos {60^ \circ }\sin {30^ \circ }$ is 1.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers