
Evaluate the value of tan 105 degrees \[\left( {\tan \,{{105}^ \circ }} \right)\].?
Answer
524.4k+ views
Hint: Here in this question, we have to find the exact value of a given trigonometric function by using the tangent sum or difference identity. First rewrite the given angle in the form of addition or difference, then the standard trigonometric formula tangent sum i.e., \[\tan \left( {A + B} \right)\] or tangent difference i.e., \[\tan \left( {A - B} \right)\] identity defined as \[\dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}\] and \[\dfrac{{\tan A - \tan B}}{{1 + \tan A \cdot \tan B}}\] using one of these we get required value.
Complete step-by-step answer:
Consider the given trigonometric function
\[ \Rightarrow \,\,\tan {105^ \circ }\]-------(1)
The given trigonometric function has an angle \[{105^{^ \circ }}\], which is not a specified standard angle so we can’t tell the exact value directly. To find the value we have to convert the given angle in the form of sum or difference of specified angles.
The angle \[{105^ \circ }\] can be written as \[{60^ \circ } + {45^ \circ }\], then
Equation (1) becomes
\[ \Rightarrow \,\tan \left( {{{60}^ \circ } + {{45}^ \circ }} \right)\] ------(2)
Equation (2) looks similar as a trigonometric function \[\tan \left( {A + B} \right)\], then by Apply the trigonometric tangent sum identity is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}\].
Here \[A = {60^ \circ }\] and \[B = {45^ \circ }\]
Substitute A and B in formula, then
\[ \Rightarrow \,\,\tan \left( {{{60}^ \circ } + {{45}^ \circ }} \right) = \dfrac{{\tan {{60}^ \circ } + \tan {{45}^ \circ }}}{{1 - \tan {{60}^ \circ } \cdot \tan {{45}^ \circ }}}\]----------(3)
By using specified tangent angle from the standard trigonometric ratios table i.e., \[\tan \,6{0^ \circ } = \sqrt 3 \], and \[\tan {45^0} = 1\].
On, Substituting the values of angles in equation (3), we have
\[ \Rightarrow \,\,\tan \left( {{{105}^ \circ }} \right) = \dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 \cdot 1}}\]
On simplification, we get
\[ \Rightarrow \,\,\tan \left( {{{105}^ \circ }} \right) = \dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 }}\]
Hence, the exact functional value of \[\tan \left( {{{105}^ \circ }} \right) = \dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 }}\].
Note: When the question is based on trigonometric function, we must know about the value for the trigonometry function so we need the table of trigonometry ratios for standard angles and also know the formulas like trigonometric identity, half and double angle formula, addition and difference identity of trigonometric function and transformation formulas.
Complete step-by-step answer:
Consider the given trigonometric function
\[ \Rightarrow \,\,\tan {105^ \circ }\]-------(1)
The given trigonometric function has an angle \[{105^{^ \circ }}\], which is not a specified standard angle so we can’t tell the exact value directly. To find the value we have to convert the given angle in the form of sum or difference of specified angles.
The angle \[{105^ \circ }\] can be written as \[{60^ \circ } + {45^ \circ }\], then
Equation (1) becomes
\[ \Rightarrow \,\tan \left( {{{60}^ \circ } + {{45}^ \circ }} \right)\] ------(2)
Equation (2) looks similar as a trigonometric function \[\tan \left( {A + B} \right)\], then by Apply the trigonometric tangent sum identity is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \cdot \tan B}}\].
Here \[A = {60^ \circ }\] and \[B = {45^ \circ }\]
Substitute A and B in formula, then
\[ \Rightarrow \,\,\tan \left( {{{60}^ \circ } + {{45}^ \circ }} \right) = \dfrac{{\tan {{60}^ \circ } + \tan {{45}^ \circ }}}{{1 - \tan {{60}^ \circ } \cdot \tan {{45}^ \circ }}}\]----------(3)
By using specified tangent angle from the standard trigonometric ratios table i.e., \[\tan \,6{0^ \circ } = \sqrt 3 \], and \[\tan {45^0} = 1\].
On, Substituting the values of angles in equation (3), we have
\[ \Rightarrow \,\,\tan \left( {{{105}^ \circ }} \right) = \dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 \cdot 1}}\]
On simplification, we get
\[ \Rightarrow \,\,\tan \left( {{{105}^ \circ }} \right) = \dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 }}\]
Hence, the exact functional value of \[\tan \left( {{{105}^ \circ }} \right) = \dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 }}\].
Note: When the question is based on trigonometric function, we must know about the value for the trigonometry function so we need the table of trigonometry ratios for standard angles and also know the formulas like trigonometric identity, half and double angle formula, addition and difference identity of trigonometric function and transformation formulas.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

