Answer
Verified
498.3k+ views
Hint: In this question first we will multiply the given two functions then apply power rule of Integration which says that integration of\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\] where $n \ne - 1$. As if $n = - 1$then ${x^{ - 1}} = \dfrac{1}{x}$ and Integration of $\int {\dfrac{1}{x}dx = \ln x + c} $, where c is the integration constant.
Complete step-by-step answer:
In the given question the integral is an indefinite type of integration as there are no upper and lower limits. To solve this question first of all, expand the given expression by multiplying $\sqrt x $.
\[ \Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^1} \times {x^{\dfrac{1}{2}}}} \right)\]
The above expression can be simplified more such that
\[
\Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^{\dfrac{1}{2} + 1}}} \right) \\
\Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^{\dfrac{3}{2}}}} \right) \\
\]
Now the Integration can be done easily
$ \Rightarrow \int {\left( {\sqrt x + {x^{\dfrac{3}{2}}}} \right)dx} $
Integrating each term separately as integral of a sum is the sum of the integrals.
$ \Rightarrow \int {\sqrt x dx + \int {{x^{\dfrac{3}{2}}}} dx} $
Now using the Power rule of integration \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \],we get
\[ \Rightarrow \dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + \dfrac{{{x^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}} + c\]
Further simplify the above expression
\[ \Rightarrow \dfrac{{2{x^{\dfrac{3}{2}}}}}{3} + \dfrac{{2{x^{\dfrac{5}{2}}}}}{5} + c\]
Note: Whenever this type of question appears always first write down the given expression which needs to be integrated. Afterwards try to simplify the expression by expanding as much as possible (as in our case we simplified \[\left( {1 + x} \right)\sqrt x \]).Use power rule of integration which says that integration of\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\], Where c is the integration constant need to be kept at the end of integration as differentiation of Constant is zero. Differentiation actually eats the constant values because of this differentiation and integration are not exactly inverse operation of each other. Do understand the basic rules of integration as it's going to help further solving the tough question with more tough expressions.
Complete step-by-step answer:
In the given question the integral is an indefinite type of integration as there are no upper and lower limits. To solve this question first of all, expand the given expression by multiplying $\sqrt x $.
\[ \Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^1} \times {x^{\dfrac{1}{2}}}} \right)\]
The above expression can be simplified more such that
\[
\Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^{\dfrac{1}{2} + 1}}} \right) \\
\Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^{\dfrac{3}{2}}}} \right) \\
\]
Now the Integration can be done easily
$ \Rightarrow \int {\left( {\sqrt x + {x^{\dfrac{3}{2}}}} \right)dx} $
Integrating each term separately as integral of a sum is the sum of the integrals.
$ \Rightarrow \int {\sqrt x dx + \int {{x^{\dfrac{3}{2}}}} dx} $
Now using the Power rule of integration \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \],we get
\[ \Rightarrow \dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + \dfrac{{{x^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}} + c\]
Further simplify the above expression
\[ \Rightarrow \dfrac{{2{x^{\dfrac{3}{2}}}}}{3} + \dfrac{{2{x^{\dfrac{5}{2}}}}}{5} + c\]
Note: Whenever this type of question appears always first write down the given expression which needs to be integrated. Afterwards try to simplify the expression by expanding as much as possible (as in our case we simplified \[\left( {1 + x} \right)\sqrt x \]).Use power rule of integration which says that integration of\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\], Where c is the integration constant need to be kept at the end of integration as differentiation of Constant is zero. Differentiation actually eats the constant values because of this differentiation and integration are not exactly inverse operation of each other. Do understand the basic rules of integration as it's going to help further solving the tough question with more tough expressions.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE