Answer
Verified
497.4k+ views
Hint: Put ${{\cos }^{2}}x=1-{{\sin }^{2}}x.$ Then modify the function as limit of trigonometric function. Multiply by $\left( \pi {{\sin }^{2}}x \right)$in numerator and denominator.
Complete step-by-step answer:
In this limit we have a trigonometric question where the variables x represent the angle of the right angle triangle.
First simplify the trigonometric function by identities,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\cos }^{2}}x \right)}{{{x}^{2}}}...................\left( i \right)$
We know ${{\cos }^{2}}x+{{\sin }^{2}}x=1$
$\Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x.$
Substitute value of ${{\cos }^{2}}x$ in equation (i);
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( n\left( 1-{{\sin }^{2}}x \right) \right)}{{{x}^{2}}}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi -\pi {{\sin }^{2}}x \right)}{{{x}^{2}}}$
We know it’s of the form $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
$\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\left( \sin \pi \times \cos \left( \pi {{\sin }^{2}}x \right) \right)-\left( \cos \pi \sin \left( \pi {{\sin }^{2}}x \right) \right)$
We know $\sin \pi =0\ \And \,\cos \pi =-1$
$\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\sin \left( \pi {{\sin }^{2}}x \right)$
The angle including the sine function belongs to the 2nd quadrant. The sine function is positive in the 2nd quadrant.
$\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \pi {{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}} \\
\end{align}$
$\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}$, sine function is positive in second quadrant.
Now we have to modify the function as the limit of the trigonometric function. Remember that if a sine function involves a limit, then you must try to transform the function exactly as the limit of the quotient of sin x by x, as x approaches zero rule.
$\therefore $ Multiply and divide the function $\pi {{\sin }^{2}}x$.
\[\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times 1 \right] \\
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{\pi {{\sin }^{2}}x} \right] \\
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \right] \\
\end{align}\]
Apply the product rule of limits, the limit of product of two functions is equal to product of their limits.
\[\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\
\end{align}\]
\[\pi {{\sin }^{2}}x\]is the angle inside the sine function and its denominator but the same angle should be the input for the first limit function.
We know $x\to 0$,
$\sin x\to \sin \left( 0 \right)\Rightarrow \sin x\to 0$
Similarly ${{\sin }^{2}}x\to {{0}^{2}}\ \ \therefore {{\sin }^{2}}\to 0$
\[\pi {{\sin }^{2}}x\to \pi \times 0\ \ \ \therefore \pi {{\sin }^{2}}x\to 0\]
$\therefore $ if \[x\to 0\], then \[\pi {{\sin }^{2}}x\to 0\]
$\begin{align}
& \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{\sin x}{x} \right)}^{2}} \\
& =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left( \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right)}^{2}} \\
\end{align}$
Use the limit of $\dfrac{\sin x}{x}$ rule as x approaches 0.
The limit of $\dfrac{\sin x}{x}$ as $x\to 0$is equal to 1 and apply it to each function to solve this limit trigonometric problem.
$\begin{align}
& \therefore \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}=1 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 \\
& \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left[ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right]}^{2}} \\
& 1\times \pi {{\left( 1 \right)}^{2}}=1\times \pi \\
& =\pi \\
\end{align}$
Therefore, it successfully solved the limit and the answer is option B.
Note: Each function in limit form is almost similar to $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}$, but it is essential to make adjustments for applying limit trigonometric rule.
Complete step-by-step answer:
In this limit we have a trigonometric question where the variables x represent the angle of the right angle triangle.
First simplify the trigonometric function by identities,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\cos }^{2}}x \right)}{{{x}^{2}}}...................\left( i \right)$
We know ${{\cos }^{2}}x+{{\sin }^{2}}x=1$
$\Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x.$
Substitute value of ${{\cos }^{2}}x$ in equation (i);
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( n\left( 1-{{\sin }^{2}}x \right) \right)}{{{x}^{2}}}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi -\pi {{\sin }^{2}}x \right)}{{{x}^{2}}}$
We know it’s of the form $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
$\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\left( \sin \pi \times \cos \left( \pi {{\sin }^{2}}x \right) \right)-\left( \cos \pi \sin \left( \pi {{\sin }^{2}}x \right) \right)$
We know $\sin \pi =0\ \And \,\cos \pi =-1$
$\therefore \sin \left( \pi -\pi {{\sin }^{2}}x \right)=\sin \left( \pi {{\sin }^{2}}x \right)$
The angle including the sine function belongs to the 2nd quadrant. The sine function is positive in the 2nd quadrant.
$\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \pi {{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}} \\
\end{align}$
$\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}$, sine function is positive in second quadrant.
Now we have to modify the function as the limit of the trigonometric function. Remember that if a sine function involves a limit, then you must try to transform the function exactly as the limit of the quotient of sin x by x, as x approaches zero rule.
$\therefore $ Multiply and divide the function $\pi {{\sin }^{2}}x$.
\[\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times 1 \right] \\
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{\pi {{\sin }^{2}}x} \right] \\
& =\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{{{x}^{2}}}\times \dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \right] \\
\end{align}\]
Apply the product rule of limits, the limit of product of two functions is equal to product of their limits.
\[\begin{align}
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\pi {{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\
\end{align}\]
\[\pi {{\sin }^{2}}x\]is the angle inside the sine function and its denominator but the same angle should be the input for the first limit function.
We know $x\to 0$,
$\sin x\to \sin \left( 0 \right)\Rightarrow \sin x\to 0$
Similarly ${{\sin }^{2}}x\to {{0}^{2}}\ \ \therefore {{\sin }^{2}}\to 0$
\[\pi {{\sin }^{2}}x\to \pi \times 0\ \ \ \therefore \pi {{\sin }^{2}}x\to 0\]
$\therefore $ if \[x\to 0\], then \[\pi {{\sin }^{2}}x\to 0\]
$\begin{align}
& \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \\
& =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi \underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{\sin x}{x} \right)}^{2}} \\
& =\underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left( \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right)}^{2}} \\
\end{align}$
Use the limit of $\dfrac{\sin x}{x}$ rule as x approaches 0.
The limit of $\dfrac{\sin x}{x}$ as $x\to 0$is equal to 1 and apply it to each function to solve this limit trigonometric problem.
$\begin{align}
& \therefore \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}=1 \\
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 \\
& \Rightarrow \underset{\pi {{\sin }^{2}}x\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \pi {{\sin }^{2}}x \right)}{\pi {{\sin }^{2}}x}\times \pi {{\left[ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right]}^{2}} \\
& 1\times \pi {{\left( 1 \right)}^{2}}=1\times \pi \\
& =\pi \\
\end{align}$
Therefore, it successfully solved the limit and the answer is option B.
Note: Each function in limit form is almost similar to $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}$, but it is essential to make adjustments for applying limit trigonometric rule.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE