Answer
Verified
497.1k+ views
Hint: Given limit \[x\to 1\], make the limit \[h\to 0\]. Simplify the expression and substitute using the L-Hospital rule if you get indeterminate form at h=0 as \[\dfrac{0}{0}\]. After simplifying the expression put, \[h\to 0\]and evaluate the expression.
Complete step-by-step answer:
We have to evaluate the given limit which is \[x\to 1\].
Let us put, \[x=1+h\].
If x = 1, then, \[1=1+h\Rightarrow h=0\].
Therefore, limit \[x\to 1\]changes to limit \[h\to 0\].
Therefore, to evaluate changes, put \[x=1+h\].
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 1+1+h \right)-\ln 2 \right)\left( {{3.4}^{1+h-1}}-3\left( 1+h \right) \right)}{\left[ {{\left( 7+1+h \right)}^{\dfrac{1}{3}}}-{{\left[ 1+3\left( 1+h \right) \right]}^{\dfrac{1}{2}}} \right]\sin \left[ 1+h-1 \right]} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 2+h \right)-\ln 2 \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh } \\
\end{align}\]
We know, \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
\[\therefore \ln \left( 2+h \right)-\ln 2=\ln \left( \dfrac{2+h}{2} \right)=\ln \left( 1+\dfrac{h}{2} \right)\]
\[=\lim \dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
We know, \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sinh }{h}=1\].
Similarly, \[\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+a \right)}{a}=1\].
Let us multiply 2h in the numerator and denominator.
\[\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]\times 2\times h}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times 2\times h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times \dfrac{2h}{2h}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left( \dfrac{\sinh }{h} \right)\times 2} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left[ \dfrac{\sinh }{h} \right]\times 2} \\
\end{align}\]
\[\dfrac{\ln \left( 1+\dfrac{h}{2} \right)}{\dfrac{h}{2}}=1\]and \[\dfrac{\sinh }{h}=1\].
L-Hospital rule states that for functions f and g are differentiable on an open interval I except possibly at point C contained I, if $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)=0$or $\pm \infty $, $g'\left( x \right)\ne 0$for all x in I with $x\ne c$, thus $\underset{x\to c}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}$.
If we apply $h\to 0$in equation (1), then the indeterminate form at $h\to 0$is $\dfrac{0}{0}$.
Thus, differentiate the numerator and denominator to simplify the expression to a limit that can be evaluated directly.
Let us put, $y={{4}^{h}}$.
$\begin{align}
& \ln y=\ln \left( {{4}^{h}} \right) \\
& \ln y=h\ln 4 \\
\end{align}$.
Differentiating both sides,
$\dfrac{1}{y}\dfrac{dy}{dh}=\ln 4$
$\Rightarrow \dfrac{dy}{dh}=y\ln 4$ (where, $y={{4}^{h}}$)
\[\Rightarrow \dfrac{dy}{dh}={{4}^{h}}.\ln 4\]
Applying L-Hospital rule once,
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{\left( 8+h \right)}^{\dfrac{1}{3}-1}}-\dfrac{3}{2}{{\left( 4+3h \right)}^{\dfrac{1}{2}-1}} \right]}\]
Put h = 0, in the above equation.
\[\begin{align}
& =\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{8}^{\dfrac{-2}{3}}}-\dfrac{3}{2}{{4}^{\dfrac{-1}{2}}} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{8}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{{{4}^{\dfrac{1}{2}}}} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{\left( {{2}^{3}} \right)}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{2} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{2}^{2}}}-\dfrac{3}{4} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{12}-\dfrac{3}{4} \right]} \\
& =\dfrac{3\left( 0-1 \right)}{2\left[ \dfrac{4-36}{12\times 4} \right]}=\dfrac{-3}{\dfrac{-2\times \left( 32 \right)}{12\times 4}}=\dfrac{-3}{\dfrac{-64}{48}}=\dfrac{-9}{4}\left( -1 \right)=\dfrac{9}{4} \\
\end{align}\]
Hence, the limit evaluates to \[\dfrac{9}{4}\].
Note: In limits be careful to use formula to simplify the expression wherever necessary. We have used substitutions and formulae to solve the limit. Remember these steps involved and how to change the limit \[\left( x\to 1 \right)\]to \[h\to 0\]. You can’t apply \[\left( x\to 1 \right)\]in an expression like this. So remember to convert it to \[h\to 0\].
Complete step-by-step answer:
We have to evaluate the given limit which is \[x\to 1\].
Let us put, \[x=1+h\].
If x = 1, then, \[1=1+h\Rightarrow h=0\].
Therefore, limit \[x\to 1\]changes to limit \[h\to 0\].
Therefore, to evaluate changes, put \[x=1+h\].
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 1+1+h \right)-\ln 2 \right)\left( {{3.4}^{1+h-1}}-3\left( 1+h \right) \right)}{\left[ {{\left( 7+1+h \right)}^{\dfrac{1}{3}}}-{{\left[ 1+3\left( 1+h \right) \right]}^{\dfrac{1}{2}}} \right]\sin \left[ 1+h-1 \right]} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \ln \left( 2+h \right)-\ln 2 \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh } \\
\end{align}\]
We know, \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
\[\therefore \ln \left( 2+h \right)-\ln 2=\ln \left( \dfrac{2+h}{2} \right)=\ln \left( 1+\dfrac{h}{2} \right)\]
\[=\lim \dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left( {{3.4}^{h}}-3-3h \right)}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh }\]
We know, \[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sinh }{h}=1\].
Similarly, \[\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+a \right)}{a}=1\].
Let us multiply 2h in the numerator and denominator.
\[\begin{align}
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]\times 2\times h}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times 2\times h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\sinh \times \dfrac{2h}{2h}} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left( \dfrac{\sinh }{h} \right)\times 2} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\dfrac{h}{2} \right)\left[ 3\left( {{4}^{h}}-1-h \right) \right]}{\dfrac{h}{2}\left[ {{\left( 8+h \right)}^{\dfrac{1}{3}}}-{{\left( 4+3h \right)}^{\dfrac{1}{2}}} \right]\left[ \dfrac{\sinh }{h} \right]\times 2} \\
\end{align}\]
\[\dfrac{\ln \left( 1+\dfrac{h}{2} \right)}{\dfrac{h}{2}}=1\]and \[\dfrac{\sinh }{h}=1\].
L-Hospital rule states that for functions f and g are differentiable on an open interval I except possibly at point C contained I, if $\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,g\left( x \right)=0$or $\pm \infty $, $g'\left( x \right)\ne 0$for all x in I with $x\ne c$, thus $\underset{x\to c}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}$.
If we apply $h\to 0$in equation (1), then the indeterminate form at $h\to 0$is $\dfrac{0}{0}$.
Thus, differentiate the numerator and denominator to simplify the expression to a limit that can be evaluated directly.
Let us put, $y={{4}^{h}}$.
$\begin{align}
& \ln y=\ln \left( {{4}^{h}} \right) \\
& \ln y=h\ln 4 \\
\end{align}$.
Differentiating both sides,
$\dfrac{1}{y}\dfrac{dy}{dh}=\ln 4$
$\Rightarrow \dfrac{dy}{dh}=y\ln 4$ (where, $y={{4}^{h}}$)
\[\Rightarrow \dfrac{dy}{dh}={{4}^{h}}.\ln 4\]
Applying L-Hospital rule once,
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{\left( 8+h \right)}^{\dfrac{1}{3}-1}}-\dfrac{3}{2}{{\left( 4+3h \right)}^{\dfrac{1}{2}-1}} \right]}\]
Put h = 0, in the above equation.
\[\begin{align}
& =\dfrac{3\left( {{4}^{h}}.\ln 4-1 \right)}{2\left[ \dfrac{1}{3}{{8}^{\dfrac{-2}{3}}}-\dfrac{3}{2}{{4}^{\dfrac{-1}{2}}} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{8}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{{{4}^{\dfrac{1}{2}}}} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{\left( {{2}^{3}} \right)}^{\dfrac{2}{3}}}}-\dfrac{1}{2}\times \dfrac{3}{2} \right]} \\
& =\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{3}\times \dfrac{1}{{{2}^{2}}}-\dfrac{3}{4} \right]}=\dfrac{3\left( \ln 1-1 \right)}{2\left[ \dfrac{1}{12}-\dfrac{3}{4} \right]} \\
& =\dfrac{3\left( 0-1 \right)}{2\left[ \dfrac{4-36}{12\times 4} \right]}=\dfrac{-3}{\dfrac{-2\times \left( 32 \right)}{12\times 4}}=\dfrac{-3}{\dfrac{-64}{48}}=\dfrac{-9}{4}\left( -1 \right)=\dfrac{9}{4} \\
\end{align}\]
Hence, the limit evaluates to \[\dfrac{9}{4}\].
Note: In limits be careful to use formula to simplify the expression wherever necessary. We have used substitutions and formulae to solve the limit. Remember these steps involved and how to change the limit \[\left( x\to 1 \right)\]to \[h\to 0\]. You can’t apply \[\left( x\to 1 \right)\]in an expression like this. So remember to convert it to \[h\to 0\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE