Answer
Verified
486k+ views
Hint: A function is continuous at a point when its left hand limit at that point is equal to its right hand limit at the same point which in turn is equal to the value of the function at that same point. Find out the left hand and right hand limit at $x = 0$ and check if they both are equal to $f(0)$ or not.
Complete step by step answer:
The given function is:
\[f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0\] and \[f\left( x \right) = \dfrac{{100}}{3}{\text{, for }}x \ne 0\]
We know that $\log m + \log n = \log mn$, applying this for $f\left( x \right)$, we’ll get:
\[
\Rightarrow f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\Rightarrow f\left( x \right) = \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\]
If we consider left hand limit, we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$,
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will apply L’ Hospital rule i.e. we’ll differentiate numerator and denominator separately. We’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
Similarly if we consider right hand limit, we’ll get:
$ \Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will again apply the L' Hospital rule. We’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
And from the question, it is given that $f\left( 0 \right) = \dfrac{{100}}{3}$.
So, at $x = 0$, we have:
${\text{L}}{\text{.H}}{\text{.L}} = {\text{R}}{\text{.H}}{\text{.L}} = f\left( x \right)$
Therefore, the given function is continuous.
Note: If a function is not continuous at any point then its differentiation will not exist at that point. Because it will also be non-differentiable at that point. Also a function is continuous at points which are in its domain only.
Complete step by step answer:
The given function is:
\[f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0\] and \[f\left( x \right) = \dfrac{{100}}{3}{\text{, for }}x \ne 0\]
We know that $\log m + \log n = \log mn$, applying this for $f\left( x \right)$, we’ll get:
\[
\Rightarrow f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\Rightarrow f\left( x \right) = \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\]
If we consider left hand limit, we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$,
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will apply L’ Hospital rule i.e. we’ll differentiate numerator and denominator separately. We’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
Similarly if we consider right hand limit, we’ll get:
$ \Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will again apply the L' Hospital rule. We’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
And from the question, it is given that $f\left( 0 \right) = \dfrac{{100}}{3}$.
So, at $x = 0$, we have:
${\text{L}}{\text{.H}}{\text{.L}} = {\text{R}}{\text{.H}}{\text{.L}} = f\left( x \right)$
Therefore, the given function is continuous.
Note: If a function is not continuous at any point then its differentiation will not exist at that point. Because it will also be non-differentiable at that point. Also a function is continuous at points which are in its domain only.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE