Answer
Verified
396.6k+ views
Hint: Use of Binomial theorem to expand the given equation. First take out $ 3 $ common from the equation then expand the values as need using the basic formula of Binomial theorem that is $ {(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1){x^2}}}{{2!}} + \dfrac{{n(n - 1)(n - 2){x^3}}}{{3!}} + .. $ just put the values accordingly and get the results.
Complete step-by-step answer:
We are given the equation $ {\left( {3 - x} \right)^{ - 2}} $ to expand in ascending orders of $ \dfrac{1}{x} $ , with four non-zero terms.
So, we are going to use the binomial theorem and from Binomial theorem we know that: $ {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. $ (i)
Since we want only four non zero terms so we can stop at fourth term only.
Case $ 1 $ :
Since we need $ \left( {1 + x} \right) $ so take $ 3 $ common from the given equation and we get:
$ {3^{ - 2}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $ .
On further solving we get:
$ \dfrac{1}{{{3^2}}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} = \dfrac{1}{9}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - x}}{3} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - x}}{3}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^3}}}{{3!}} \;
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Substituting this value in $ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} $ :
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9}\left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Opening the parenthesis on the right side and we get:
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9} + \dfrac{{2x}}{{27}} + \dfrac{{{x^2}}}{{27}} + \dfrac{{4{x^3}}}{{243}} $ .
Since the value of $ x $ is given by $ \dfrac{{ - x}}{3} $ .And \[\left| {\dfrac{{ - x}}{3}} \right| < 1\] So the value of $ x $ for which the expansion is valid is $ \left| x \right| < 3 $ .
Case $ 2 $ :
Next, we repeat the same steps with some changes:
Since we need $ \left( {1 + x} \right) $ so take $ - x $ common now from the given equation and we get:
$ {\left( { - x} \right)^{ - 2}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On further solving we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - 3}}{x} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - 3}}{x}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^3}}}{{3!}} \\
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Substituting this value in $ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $ :
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}\left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Opening the parenthesis on the right, side and we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}} + \dfrac{6}{{{x^3}}} + \dfrac{{27}}{{{x^4}}} + \dfrac{{108}}{{{x^5}}} $
Since the value of $ x $ is given by \[\dfrac{{ - 3}}{x}\].And $ \left| {\dfrac{{ - 3}}{x}} \right| < 1 $ . So the value of $ x $ for which the expansion is valid is $ \left| x \right| > 3 $ .
Note: There can be an error in putting the values in the formula and get the results.
Don’t forget to multiply the coefficients in the expanded formula.
Always check up to which term values are needed.
Also remember that we are supposed to take minus power out along with common terms.
Complete step-by-step answer:
We are given the equation $ {\left( {3 - x} \right)^{ - 2}} $ to expand in ascending orders of $ \dfrac{1}{x} $ , with four non-zero terms.
So, we are going to use the binomial theorem and from Binomial theorem we know that: $ {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. $ (i)
Since we want only four non zero terms so we can stop at fourth term only.
Case $ 1 $ :
Since we need $ \left( {1 + x} \right) $ so take $ 3 $ common from the given equation and we get:
$ {3^{ - 2}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $ .
On further solving we get:
$ \dfrac{1}{{{3^2}}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} = \dfrac{1}{9}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - x}}{3} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - x}}{3}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^3}}}{{3!}} \;
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Substituting this value in $ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} $ :
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9}\left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Opening the parenthesis on the right side and we get:
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9} + \dfrac{{2x}}{{27}} + \dfrac{{{x^2}}}{{27}} + \dfrac{{4{x^3}}}{{243}} $ .
Since the value of $ x $ is given by $ \dfrac{{ - x}}{3} $ .And \[\left| {\dfrac{{ - x}}{3}} \right| < 1\] So the value of $ x $ for which the expansion is valid is $ \left| x \right| < 3 $ .
Case $ 2 $ :
Next, we repeat the same steps with some changes:
Since we need $ \left( {1 + x} \right) $ so take $ - x $ common now from the given equation and we get:
$ {\left( { - x} \right)^{ - 2}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On further solving we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - 3}}{x} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - 3}}{x}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^3}}}{{3!}} \\
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Substituting this value in $ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $ :
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}\left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Opening the parenthesis on the right, side and we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}} + \dfrac{6}{{{x^3}}} + \dfrac{{27}}{{{x^4}}} + \dfrac{{108}}{{{x^5}}} $
Since the value of $ x $ is given by \[\dfrac{{ - 3}}{x}\].And $ \left| {\dfrac{{ - 3}}{x}} \right| < 1 $ . So the value of $ x $ for which the expansion is valid is $ \left| x \right| > 3 $ .
Note: There can be an error in putting the values in the formula and get the results.
Don’t forget to multiply the coefficients in the expanded formula.
Always check up to which term values are needed.
Also remember that we are supposed to take minus power out along with common terms.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE