Answer
Verified
499.5k+ views
Hint: We have to expand ${{(2x-y)}^{5}}$ , for that use formula \[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\] and assume $a=2x$, $b=-y$ and $n=5$ . Try it, you will get the answer.
Complete step-by-step answer:
As the power increases the expansion becomes lengthy and tedious to calculate. A binomial expression that has been raised to a very large power can be easily calculated with the help of Binomial Theorem. Learn about all the details about binomial theorem like its definition, properties, applications.
According to the binomial theorem, the ${{(r+1)}^{th}}$term in the expansion of ${{(a+b)}^{n}}$is,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
The above term is a general term or${{(r+1)}^{th}}$term. The total number of terms in the binomial expansion ${{(a+b)}^{n}}$is$(n+1)$, i.e. one more than the exponent$n$.
In the Binomial expression, we have
\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]
So the coefficients${}^{n}{{C}_{0}},{}^{n}{{C}_{1}},............,{}^{n}{{C}_{n}}$ are known as binomial or combinatorial coefficients.
You can see them${}^{n}{{C}_{r}}$being used here which is the binomial coefficient. The sum of the binomial coefficients will be ${{2}^{n}}$because, as we know that,
$\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}$
Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to${{2}^{n-1}}$.
The middle term depends upon the value of$n$,
If $n$ is even: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (odd).
If $n$ is odd: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (even).
If $n$is a positive integer,
\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]
So here $a=2x$, $b=-y$ and $n=5$ .
So using the binomial expansion,
\[{{(2x-y)}^{5}}={}^{5}{{C}_{0}}{{(2x)}^{5}}{{\left( -y \right)}^{0}}+{}^{5}{{C}_{1}}{{(2x)}^{5-1}}{{\left( -y \right)}^{1}}+{}^{5}{{C}_{2}}{{(2x)}^{5-2}}{{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}{{(2x)}^{5-3}}{{\left( -y \right)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{5-4}}{{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{(2x)}^{5-5}}{{\left( -y \right)}^{5}}\]
\[\begin{align}
& {{(2x-y)}^{5}}={}^{5}{{C}_{0}}{{(2x)}^{5}}+{}^{5}{{C}_{1}}{{(2x)}^{4}}\left( -y \right)+{}^{5}{{C}_{2}}{{(2x)}^{3}}{{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}{{(2x)}^{2}}{{\left( -y \right)}^{3}}+{}^{5}{{C}_{4}}{{(2x)}^{1}}{{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{(2x)}^{0}}{{\left( -y \right)}^{5}} \\
& {{(2x-y)}^{5}}=(32{{x}^{5}})+{}^{5}{{C}_{1}}(16{{x}^{4}})\left( -y \right)+{}^{5}{{C}_{2}}(8{{x}^{3}}){{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}(4{{x}^{2}}){{\left( -y \right)}^{3}}+{}^{5}{{C}_{4}}(2x){{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -y \right)}^{5}} \\
& {{(2x-y)}^{5}}=(32{{x}^{5}})+5(16{{x}^{4}})\left( -y \right)+\dfrac{5\times 4}{2\times 1}(8{{x}^{3}}){{\left( -y \right)}^{2}}+\dfrac{5\times 4\times 3}{3\times 2\times 1}(4{{x}^{2}}){{\left( -y \right)}^{3}}+\dfrac{5\times 4\times 3\times 2}{4\times 3\times 2\times 1}(2x){{\left( -y \right)}^{4}}+{{\left( -y \right)}^{5}} \\
& {{(2x-y)}^{5}}=(32{{x}^{5}})-80{{x}^{4}}y+80{{x}^{3}}{{y}^{2}}-40{{x}^{2}}{{y}^{3}}+10x{{y}^{4}}-{{y}^{5}} \\
\end{align}\]
So we get the expansion as,
\[{{(2x-y)}^{5}}=(32{{x}^{5}})-80{{x}^{4}}y+80{{x}^{3}}{{y}^{2}}-40{{x}^{2}}{{y}^{3}}+10x{{y}^{4}}-{{y}^{5}}\] .
Note: Read the question and see what is asked. Your concept regarding binomial theorem should be clear. Also, you must know the general formula of the binomial theorem. A proper assumption should be made. Do not make silly mistakes while substituting. Equate it in a proper manner and don't confuse yourself.
Complete step-by-step answer:
As the power increases the expansion becomes lengthy and tedious to calculate. A binomial expression that has been raised to a very large power can be easily calculated with the help of Binomial Theorem. Learn about all the details about binomial theorem like its definition, properties, applications.
According to the binomial theorem, the ${{(r+1)}^{th}}$term in the expansion of ${{(a+b)}^{n}}$is,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
The above term is a general term or${{(r+1)}^{th}}$term. The total number of terms in the binomial expansion ${{(a+b)}^{n}}$is$(n+1)$, i.e. one more than the exponent$n$.
In the Binomial expression, we have
\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]
So the coefficients${}^{n}{{C}_{0}},{}^{n}{{C}_{1}},............,{}^{n}{{C}_{n}}$ are known as binomial or combinatorial coefficients.
You can see them${}^{n}{{C}_{r}}$being used here which is the binomial coefficient. The sum of the binomial coefficients will be ${{2}^{n}}$because, as we know that,
$\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}$
Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to${{2}^{n-1}}$.
The middle term depends upon the value of$n$,
If $n$ is even: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (odd).
If $n$ is odd: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (even).
If $n$is a positive integer,
\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]
So here $a=2x$, $b=-y$ and $n=5$ .
So using the binomial expansion,
\[{{(2x-y)}^{5}}={}^{5}{{C}_{0}}{{(2x)}^{5}}{{\left( -y \right)}^{0}}+{}^{5}{{C}_{1}}{{(2x)}^{5-1}}{{\left( -y \right)}^{1}}+{}^{5}{{C}_{2}}{{(2x)}^{5-2}}{{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}{{(2x)}^{5-3}}{{\left( -y \right)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{5-4}}{{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{(2x)}^{5-5}}{{\left( -y \right)}^{5}}\]
\[\begin{align}
& {{(2x-y)}^{5}}={}^{5}{{C}_{0}}{{(2x)}^{5}}+{}^{5}{{C}_{1}}{{(2x)}^{4}}\left( -y \right)+{}^{5}{{C}_{2}}{{(2x)}^{3}}{{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}{{(2x)}^{2}}{{\left( -y \right)}^{3}}+{}^{5}{{C}_{4}}{{(2x)}^{1}}{{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{(2x)}^{0}}{{\left( -y \right)}^{5}} \\
& {{(2x-y)}^{5}}=(32{{x}^{5}})+{}^{5}{{C}_{1}}(16{{x}^{4}})\left( -y \right)+{}^{5}{{C}_{2}}(8{{x}^{3}}){{\left( -y \right)}^{2}}+{}^{5}{{C}_{3}}(4{{x}^{2}}){{\left( -y \right)}^{3}}+{}^{5}{{C}_{4}}(2x){{\left( -y \right)}^{4}}+{}^{5}{{C}_{5}}{{\left( -y \right)}^{5}} \\
& {{(2x-y)}^{5}}=(32{{x}^{5}})+5(16{{x}^{4}})\left( -y \right)+\dfrac{5\times 4}{2\times 1}(8{{x}^{3}}){{\left( -y \right)}^{2}}+\dfrac{5\times 4\times 3}{3\times 2\times 1}(4{{x}^{2}}){{\left( -y \right)}^{3}}+\dfrac{5\times 4\times 3\times 2}{4\times 3\times 2\times 1}(2x){{\left( -y \right)}^{4}}+{{\left( -y \right)}^{5}} \\
& {{(2x-y)}^{5}}=(32{{x}^{5}})-80{{x}^{4}}y+80{{x}^{3}}{{y}^{2}}-40{{x}^{2}}{{y}^{3}}+10x{{y}^{4}}-{{y}^{5}} \\
\end{align}\]
So we get the expansion as,
\[{{(2x-y)}^{5}}=(32{{x}^{5}})-80{{x}^{4}}y+80{{x}^{3}}{{y}^{2}}-40{{x}^{2}}{{y}^{3}}+10x{{y}^{4}}-{{y}^{5}}\] .
Note: Read the question and see what is asked. Your concept regarding binomial theorem should be clear. Also, you must know the general formula of the binomial theorem. A proper assumption should be made. Do not make silly mistakes while substituting. Equate it in a proper manner and don't confuse yourself.
Recently Updated Pages
A ray of light passes through an equilateral prism class 12 physics JEE_Main
The size of the image of an object which is at infinity class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
Rays from Sun converge at a point 15 cm in front of class 12 physics JEE_Main
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE