
Expand the following binomial: ${\left( {1 + \dfrac{x}{2}} \right)^7}$
Answer
623.7k+ views
Hint- Here, we will proceed by using one of the special forms of the general form of binomial expansion.
As we know that according to special form of binomial theorem of expansion, we have
\[
{\left( {1 + x} \right)^n} = {}^n{C_0}{\left( 1 \right)^n}{\left( x \right)^0} + {}^n{C_1}{\left( 1 \right)^{n - 1}}{\left( x \right)^1} + {}^n{C_2}{\left( 1 \right)^{n - 2}}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( 1 \right)^1}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( 1 \right)^0}{\left( x \right)^n} \\
\Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^n} \\
\]
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\; \to {\text{(1)}}$
Here for the binomial expansion of ${\left( {1 + \dfrac{x}{2}} \right)^7}$, $x$ is replaced by $\dfrac{x}{2}$ and the value of $n$ is 7.
${\left( {1 + \dfrac{x}{2}} \right)^7} = {}^7{C_0} + {}^7{C_1}\left( {\dfrac{x}{2}} \right) + {}^7{C_2}{\left( {\dfrac{x}{2}} \right)^2} + {}^7{C_3}{\left( {\dfrac{x}{2}} \right)^3} + {}^7{C_4}{\left( {\dfrac{x}{2}} \right)^4} + {}^7{C_5}{\left( {\dfrac{x}{2}} \right)^5} + {}^7{C_6}{\left( {\dfrac{x}{2}} \right)^6} + {}^7{C_7}{\left( {\dfrac{x}{2}} \right)^7}{\text{ }} \to {\text{(2)}}$
Now using equation (1), we can write
\[
{}^7{C_0} = \dfrac{{7!}}{{0!\left( {7 - 0} \right)!}}\; = \dfrac{{7!}}{{0!7!}}\; = 1{\text{ }}\left[ {\because 0! = 1} \right],{}^7{C_1} = \dfrac{{7!}}{{1!\left( {7 - 1} \right)!}}\; = \dfrac{{7.6!}}{{6!}}\; = 7 \\
{}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}}\; = \dfrac{{7.6.5!}}{{2.1.5!}}\; = \dfrac{{7 \times 6}}{2} = 21,{}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}}\; = \dfrac{{7.6.5.4!}}{{3.2.1.4!}}\; = \dfrac{{7 \times 6 \times 5}}{{3 \times 2}} = 35 \\
{}^7{C_4} = \dfrac{{7.6.5.4!}}{{4!\left( {7 - 4} \right)!}}\; = \dfrac{{7.6.5.4!}}{{4!3.2.1!}}\; = {}^7{C_3} = 35,{}^7{C_5} = \dfrac{{7.6.5!}}{{5!\left( {7 - 5} \right)!}}\; = \dfrac{{7.6.5!}}{{5!2.1!}}\; = {}^7{C_2} = 21 \\
{}^7{C_6} = \dfrac{{7.6!}}{{6!\left( {7 - 6} \right)!}}\; = \dfrac{{7.6!}}{{6!1!}}\; = {}^7{C_1} = 7,{}^7{C_7} = \dfrac{{7!}}{{7!\left( {7 - 7} \right)!}}\; = \dfrac{{7!}}{{7!0!}}\; = {}^7{C_0} = 1 \\
\\
\]
Now substituting all the above calculated values in equation (2), we get
${\left( {1 + \dfrac{x}{2}} \right)^7} = 1 + \dfrac{{7x}}{2} + \dfrac{{21{{\left( x \right)}^2}}}{4} + \dfrac{{35{{\left( x \right)}^3}}}{8} + \dfrac{{35{{\left( x \right)}^4}}}{{16}} + \dfrac{{21{{\left( x \right)}^5}}}{{32}} + \dfrac{{7{{\left( x \right)}^6}}}{{64}} + \dfrac{{{{\left( x \right)}^7}}}{{128}}$
The above equation shows the binomial expansion for ${\left( {1 + \dfrac{x}{2}} \right)^7}$.
Note- The general form of binomial expansion is \[{\left( {x + y} \right)^n} = {}^n{C_0}{\left( x \right)^n}{\left( y \right)^0} + {}^n{C_1}{\left( x \right)^{n - 1}}{\left( y \right)^1} + {}^n{C_2}{\left( x \right)^{n - 2}}{\left( y \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^1}{\left( y \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^0}{\left( y \right)^n}\] and in this problem, its special form is used by replacing $x$ by 1 and $y$ by $x$.
As we know that according to special form of binomial theorem of expansion, we have
\[
{\left( {1 + x} \right)^n} = {}^n{C_0}{\left( 1 \right)^n}{\left( x \right)^0} + {}^n{C_1}{\left( 1 \right)^{n - 1}}{\left( x \right)^1} + {}^n{C_2}{\left( 1 \right)^{n - 2}}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( 1 \right)^1}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( 1 \right)^0}{\left( x \right)^n} \\
\Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^n} \\
\]
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\; \to {\text{(1)}}$
Here for the binomial expansion of ${\left( {1 + \dfrac{x}{2}} \right)^7}$, $x$ is replaced by $\dfrac{x}{2}$ and the value of $n$ is 7.
${\left( {1 + \dfrac{x}{2}} \right)^7} = {}^7{C_0} + {}^7{C_1}\left( {\dfrac{x}{2}} \right) + {}^7{C_2}{\left( {\dfrac{x}{2}} \right)^2} + {}^7{C_3}{\left( {\dfrac{x}{2}} \right)^3} + {}^7{C_4}{\left( {\dfrac{x}{2}} \right)^4} + {}^7{C_5}{\left( {\dfrac{x}{2}} \right)^5} + {}^7{C_6}{\left( {\dfrac{x}{2}} \right)^6} + {}^7{C_7}{\left( {\dfrac{x}{2}} \right)^7}{\text{ }} \to {\text{(2)}}$
Now using equation (1), we can write
\[
{}^7{C_0} = \dfrac{{7!}}{{0!\left( {7 - 0} \right)!}}\; = \dfrac{{7!}}{{0!7!}}\; = 1{\text{ }}\left[ {\because 0! = 1} \right],{}^7{C_1} = \dfrac{{7!}}{{1!\left( {7 - 1} \right)!}}\; = \dfrac{{7.6!}}{{6!}}\; = 7 \\
{}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}}\; = \dfrac{{7.6.5!}}{{2.1.5!}}\; = \dfrac{{7 \times 6}}{2} = 21,{}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}}\; = \dfrac{{7.6.5.4!}}{{3.2.1.4!}}\; = \dfrac{{7 \times 6 \times 5}}{{3 \times 2}} = 35 \\
{}^7{C_4} = \dfrac{{7.6.5.4!}}{{4!\left( {7 - 4} \right)!}}\; = \dfrac{{7.6.5.4!}}{{4!3.2.1!}}\; = {}^7{C_3} = 35,{}^7{C_5} = \dfrac{{7.6.5!}}{{5!\left( {7 - 5} \right)!}}\; = \dfrac{{7.6.5!}}{{5!2.1!}}\; = {}^7{C_2} = 21 \\
{}^7{C_6} = \dfrac{{7.6!}}{{6!\left( {7 - 6} \right)!}}\; = \dfrac{{7.6!}}{{6!1!}}\; = {}^7{C_1} = 7,{}^7{C_7} = \dfrac{{7!}}{{7!\left( {7 - 7} \right)!}}\; = \dfrac{{7!}}{{7!0!}}\; = {}^7{C_0} = 1 \\
\\
\]
Now substituting all the above calculated values in equation (2), we get
${\left( {1 + \dfrac{x}{2}} \right)^7} = 1 + \dfrac{{7x}}{2} + \dfrac{{21{{\left( x \right)}^2}}}{4} + \dfrac{{35{{\left( x \right)}^3}}}{8} + \dfrac{{35{{\left( x \right)}^4}}}{{16}} + \dfrac{{21{{\left( x \right)}^5}}}{{32}} + \dfrac{{7{{\left( x \right)}^6}}}{{64}} + \dfrac{{{{\left( x \right)}^7}}}{{128}}$
The above equation shows the binomial expansion for ${\left( {1 + \dfrac{x}{2}} \right)^7}$.
Note- The general form of binomial expansion is \[{\left( {x + y} \right)^n} = {}^n{C_0}{\left( x \right)^n}{\left( y \right)^0} + {}^n{C_1}{\left( x \right)^{n - 1}}{\left( y \right)^1} + {}^n{C_2}{\left( x \right)^{n - 2}}{\left( y \right)^2} + ..... + {}^n{C_{n - 1}}{\left( x \right)^1}{\left( y \right)^{n - 1}} + {}^n{C_n}{\left( x \right)^0}{\left( y \right)^n}\] and in this problem, its special form is used by replacing $x$ by 1 and $y$ by $x$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

