Expand using algebraic identity: \[{\left( {b - 7} \right)^2}\]
Answer
Verified
459.9k+ views
Hint: Here, we have to expand the term by using the algebraic identity. Algebra is a branch of mathematics dealing with symbols and the rules for manipulating those symbols. In elementary algebra, the symbols representing quantities without having fixed values are known as variables.
Formula used:
We will use the formula of the square of difference of two numbers is given by the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] where \[a\] and \[b\] are two numbers.
Complete step-by-step answer:
We are given an algebraic expression \[{\left( {b - 7} \right)^2}\].
Now, we have to expand the algebraic expression using an algebraic identity.
Now, substituting \[a = b\] and \[b = 7\] in the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we have
\[ \Rightarrow {\left( {b - 7} \right)^2} = {b^2} + {7^2} - 2 \cdot b \cdot 7\]
The square of the variable \[b\] is \[{b^2}\] .
The square of the number \[7\] is \[49\] .
The product of the number and the variable is \[14b\] .
So by substituting the values, we have
\[ \Rightarrow {\left( {b - 7} \right)^2} = {b^2} + 49 - 14b\] .
Therefore, the algebraic expansion of \[{\left( {b - 7} \right)^2}\]is \[{b^2} + 49 - 14b\].
Note: The algebraic equations which are valid for all values of variables in them are called algebraic identities. They are also used for the factorization of polynomials. .
An algebraic expression is an expression which consists of variables and constants. In expressions, a variable can take any value. Thus, the expression value can change if the variable values are changed. But algebraic identity is equality which is true for all the values of the variables.
Formula used:
We will use the formula of the square of difference of two numbers is given by the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] where \[a\] and \[b\] are two numbers.
Complete step-by-step answer:
We are given an algebraic expression \[{\left( {b - 7} \right)^2}\].
Now, we have to expand the algebraic expression using an algebraic identity.
Now, substituting \[a = b\] and \[b = 7\] in the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we have
\[ \Rightarrow {\left( {b - 7} \right)^2} = {b^2} + {7^2} - 2 \cdot b \cdot 7\]
The square of the variable \[b\] is \[{b^2}\] .
The square of the number \[7\] is \[49\] .
The product of the number and the variable is \[14b\] .
So by substituting the values, we have
\[ \Rightarrow {\left( {b - 7} \right)^2} = {b^2} + 49 - 14b\] .
Therefore, the algebraic expansion of \[{\left( {b - 7} \right)^2}\]is \[{b^2} + 49 - 14b\].
Note: The algebraic equations which are valid for all values of variables in them are called algebraic identities. They are also used for the factorization of polynomials. .
An algebraic expression is an expression which consists of variables and constants. In expressions, a variable can take any value. Thus, the expression value can change if the variable values are changed. But algebraic identity is equality which is true for all the values of the variables.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE
What were the major teachings of Baba Guru Nanak class 7 social science CBSE
What was the approximate time period of the Indus Valley class 7 social science CBSE