Answer
Verified
483.3k+ views
Hint: Write formula of work $W=\overrightarrow{F}\cdot \overrightarrow{r}$. Learn dot product of two forces. For positive work, W should be positive so for this find an angle between force and displacement.
Dot product of two component A and B
$\overrightarrow{A}\cdot \overrightarrow{B}=AB\cos \theta $
Where $\theta $ is the angle between two vectors.
$\overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta $
Find $\theta $ for positive W, negative W and zero W.
Complete step by step answer:
The work done by a force on a particle during a displacement is given as
$W=\overrightarrow{F}\cdot \overrightarrow{r}$
Here, W = work
$\overrightarrow{F}$= force
$\overrightarrow{r}$= displacement
Positive work done – The work done is said to be positive when force and displacement are in the same direction.
$\begin{align}
& \theta ={{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
\end{align}$
Hence, work is positive.
Zero work – the work done is said to be zero when force and displacement are perpendicular to each other.
$\begin{align}
& \theta ={{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=0 \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=0 \\
\end{align}$
Hence, work is zero
Negative work done – The work done is said to be negative when force and displacement are in opposite directions.
$\begin{align}
& \theta ={{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
\end{align}$
Hence, work is negative.
Note: Work done by friction is always zero because friction force and displacement act in opposite directions. When a spring travels from A to B and from B back to A then work done during the return journey is negative of the work during the onwards journey and the net work done by the spring is zero.
Dot product of two component A and B
$\overrightarrow{A}\cdot \overrightarrow{B}=AB\cos \theta $
Where $\theta $ is the angle between two vectors.
$\overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta $
Find $\theta $ for positive W, negative W and zero W.
Complete step by step answer:
The work done by a force on a particle during a displacement is given as
$W=\overrightarrow{F}\cdot \overrightarrow{r}$
Here, W = work
$\overrightarrow{F}$= force
$\overrightarrow{r}$= displacement
Positive work done – The work done is said to be positive when force and displacement are in the same direction.
$\begin{align}
& \theta ={{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
\end{align}$
Hence, work is positive.
Zero work – the work done is said to be zero when force and displacement are perpendicular to each other.
$\begin{align}
& \theta ={{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=0 \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=0 \\
\end{align}$
Hence, work is zero
Negative work done – The work done is said to be negative when force and displacement are in opposite directions.
$\begin{align}
& \theta ={{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
\end{align}$
Hence, work is negative.
Note: Work done by friction is always zero because friction force and displacement act in opposite directions. When a spring travels from A to B and from B back to A then work done during the return journey is negative of the work during the onwards journey and the net work done by the spring is zero.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE