Explain positive, negative and zero work. Give one example of each.
Answer
Verified
493.5k+ views
Hint: Write formula of work $W=\overrightarrow{F}\cdot \overrightarrow{r}$. Learn dot product of two forces. For positive work, W should be positive so for this find an angle between force and displacement.
Dot product of two component A and B
$\overrightarrow{A}\cdot \overrightarrow{B}=AB\cos \theta $
Where $\theta $ is the angle between two vectors.
$\overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta $
Find $\theta $ for positive W, negative W and zero W.
Complete step by step answer:
The work done by a force on a particle during a displacement is given as
$W=\overrightarrow{F}\cdot \overrightarrow{r}$
Here, W = work
$\overrightarrow{F}$= force
$\overrightarrow{r}$= displacement
Positive work done – The work done is said to be positive when force and displacement are in the same direction.
$\begin{align}
& \theta ={{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
\end{align}$
Hence, work is positive.
Zero work – the work done is said to be zero when force and displacement are perpendicular to each other.
$\begin{align}
& \theta ={{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=0 \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=0 \\
\end{align}$
Hence, work is zero
Negative work done – The work done is said to be negative when force and displacement are in opposite directions.
$\begin{align}
& \theta ={{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
\end{align}$
Hence, work is negative.
Note: Work done by friction is always zero because friction force and displacement act in opposite directions. When a spring travels from A to B and from B back to A then work done during the return journey is negative of the work during the onwards journey and the net work done by the spring is zero.
Dot product of two component A and B
$\overrightarrow{A}\cdot \overrightarrow{B}=AB\cos \theta $
Where $\theta $ is the angle between two vectors.
$\overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta $
Find $\theta $ for positive W, negative W and zero W.
Complete step by step answer:
The work done by a force on a particle during a displacement is given as
$W=\overrightarrow{F}\cdot \overrightarrow{r}$
Here, W = work
$\overrightarrow{F}$= force
$\overrightarrow{r}$= displacement
Positive work done – The work done is said to be positive when force and displacement are in the same direction.
$\begin{align}
& \theta ={{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
\end{align}$
Hence, work is positive.
Zero work – the work done is said to be zero when force and displacement are perpendicular to each other.
$\begin{align}
& \theta ={{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=0 \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=0 \\
\end{align}$
Hence, work is zero
Negative work done – The work done is said to be negative when force and displacement are in opposite directions.
$\begin{align}
& \theta ={{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
\end{align}$
Hence, work is negative.
Note: Work done by friction is always zero because friction force and displacement act in opposite directions. When a spring travels from A to B and from B back to A then work done during the return journey is negative of the work during the onwards journey and the net work done by the spring is zero.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE