Answer
Verified
435k+ views
Hint: Resistor is an electrical component that is used to convert the current into the voltage or the voltage into the current. Resistors are said to be in series when they are connected in one line. Here, we will use ohm’s law to calculate the formula of equivalent resistance.
Complete step by step answer:
Consider a circuit carrying a current $I$ in which three resistors are connected in series. A voltage $V$ is connected to the circuit.
Here, ${R_1}$ , ${R_2}$ and ${R_3}$ are the resistors that are connected in series and ${V_1}$ , ${V_2}$ and ${V_3}$ are the voltage drops across the respective resistors.
Now, as the resistors are connected in series, the current flowing through the circuit will be the same across all the resistors. Now, the voltage $V$ across the circuit is given by
$V = {V_1} + {V_2} + {V_3} + ....$
Now, if a resistor $R$ is placed in the place of these three resistors ${R_1}$ , ${R_2}$ and ${R_3}$ such that the current in the circuit remains the same, then $R$ is called the equivalent resistance.
Therefore, for an equivalent resistance, $V = IR$.
Now, the voltage drop across the resistance ${R_1}$ is ${V_1} = I{R_1}$.
The voltage drop across the resistance ${R_2}$ is ${V_2} = I{R_2}$.
The voltage drop across the resistance ${R_3}$ is ${V_3} = I{R_3}$.
Therefore, the voltage $V$ across the circuit is given by,
$V = {V_1} + {V_2} + {V_3} + .....$
$ \Rightarrow \,V = I{R_1} + I{R_2} + I{R_3}$
Now, taking $I$ common, we get
$V = I\left( {{R_1} + {R_2} + {R_3}} \right)$
$ \therefore \,\dfrac{V}{I} = {R_1} + {R_2} + {R_3}$
Now, as we know $V = IR$
Therefore, $\dfrac{V}{I} = R$
Therefore, the above equation becomes
$R = {R_1} + {R_2} + {R_3}$
Which is the equivalent resistance.
Thus, we can say that the equivalent resistance $R$ in the circuit is the sum of all the individual resistances in the circuit.
Note:All the resistors in the series do not get a source voltage, therefore, they divide the voltage across them. Also, the amount of energy used by the resistors will be the same as the amount of energy used by a single resistor. This energy is also divided across the resistors depending upon their resistances.
Complete step by step answer:
Consider a circuit carrying a current $I$ in which three resistors are connected in series. A voltage $V$ is connected to the circuit.
Here, ${R_1}$ , ${R_2}$ and ${R_3}$ are the resistors that are connected in series and ${V_1}$ , ${V_2}$ and ${V_3}$ are the voltage drops across the respective resistors.
Now, as the resistors are connected in series, the current flowing through the circuit will be the same across all the resistors. Now, the voltage $V$ across the circuit is given by
$V = {V_1} + {V_2} + {V_3} + ....$
Now, if a resistor $R$ is placed in the place of these three resistors ${R_1}$ , ${R_2}$ and ${R_3}$ such that the current in the circuit remains the same, then $R$ is called the equivalent resistance.
Therefore, for an equivalent resistance, $V = IR$.
Now, the voltage drop across the resistance ${R_1}$ is ${V_1} = I{R_1}$.
The voltage drop across the resistance ${R_2}$ is ${V_2} = I{R_2}$.
The voltage drop across the resistance ${R_3}$ is ${V_3} = I{R_3}$.
Therefore, the voltage $V$ across the circuit is given by,
$V = {V_1} + {V_2} + {V_3} + .....$
$ \Rightarrow \,V = I{R_1} + I{R_2} + I{R_3}$
Now, taking $I$ common, we get
$V = I\left( {{R_1} + {R_2} + {R_3}} \right)$
$ \therefore \,\dfrac{V}{I} = {R_1} + {R_2} + {R_3}$
Now, as we know $V = IR$
Therefore, $\dfrac{V}{I} = R$
Therefore, the above equation becomes
$R = {R_1} + {R_2} + {R_3}$
Which is the equivalent resistance.
Thus, we can say that the equivalent resistance $R$ in the circuit is the sum of all the individual resistances in the circuit.
Note:All the resistors in the series do not get a source voltage, therefore, they divide the voltage across them. Also, the amount of energy used by the resistors will be the same as the amount of energy used by a single resistor. This energy is also divided across the resistors depending upon their resistances.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE