Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression?
Answer
Verified
468.3k+ views
Hint: For pure liquids and solids, their concentration can be given by the formula,
$\Rightarrow$ $M = \dfrac{n}{V}$
Where, ‘M’ is the molarity or molar concentration of the substance
‘n’ is the number of moles of substance
‘V’ is the volume of the solution.
Complete step by step answer:
As said above the concentration of a substance is given by the formula,
$\Rightarrow$ $M = \dfrac{n}{V}$
Number of moles is the ratio of given mass of the substance and its molar mass.
$\Rightarrow$So, $n = \dfrac{m}{M}$
Where, ‘m’ is the given mass and ‘M’ is the molar mass of the substance.
Substituting the expression for ‘n’ in the molarity expression,
$\Rightarrow$$M = \dfrac{m}{{V \times M}}$
As, mass divided by volume is equal to density, that is,
$\Rightarrow$$d = \dfrac{m}{V}$
$\Rightarrow$So, $M = \dfrac{d}{M}$
Since, both density and molar mass of a pure liquid or solid remains the same throughout the reaction at the same temperature and pressure, therefore, the molarity or concentration of pure solids and liquids remains constant throughout the reaction.
Now for writing the equilibrium constant expression of a reaction, let us consider the following reaction:
$C(s) + C{O_2}(g) \rightleftharpoons 2CO(g)$
Equilibrium constant expression,
$\Rightarrow$ ${K_c} = \dfrac{{{{[CO]}^2}}}{{[C][C{O_2}]}}$
As the concentration of C(s) is constant throughout the reaction, therefore, its concentration or activity can be considered as unity, and it can be ignored in the equilibrium constant expression.
$\Rightarrow$${K_{eq}} = \dfrac{{{{[CO]}^2}}}{{[1][C{O_2}]}}$
$ \Rightarrow {K_{eq}} = \dfrac{{{{[CO]}^2}}}{{[C{O_2}]}}$
Note:
The rate law expression should not be confused with the equilibrium constant expression. Rate law expression for a reaction,
$aA + bB \to cC + dD$
Is given as, $rate = k{[A]^m}{[B]^n}$
Here, the concentration of the reactants is not necessarily raised to the power equal to their stoichiometric coefficients. In this expression, ‘m’ and ‘n’ represent the order of reaction with respect to A and B respectively.
$m + n$ give the overall order of the reaction.
$\Rightarrow$ $M = \dfrac{n}{V}$
Where, ‘M’ is the molarity or molar concentration of the substance
‘n’ is the number of moles of substance
‘V’ is the volume of the solution.
Complete step by step answer:
As said above the concentration of a substance is given by the formula,
$\Rightarrow$ $M = \dfrac{n}{V}$
Number of moles is the ratio of given mass of the substance and its molar mass.
$\Rightarrow$So, $n = \dfrac{m}{M}$
Where, ‘m’ is the given mass and ‘M’ is the molar mass of the substance.
Substituting the expression for ‘n’ in the molarity expression,
$\Rightarrow$$M = \dfrac{m}{{V \times M}}$
As, mass divided by volume is equal to density, that is,
$\Rightarrow$$d = \dfrac{m}{V}$
$\Rightarrow$So, $M = \dfrac{d}{M}$
Since, both density and molar mass of a pure liquid or solid remains the same throughout the reaction at the same temperature and pressure, therefore, the molarity or concentration of pure solids and liquids remains constant throughout the reaction.
Now for writing the equilibrium constant expression of a reaction, let us consider the following reaction:
$C(s) + C{O_2}(g) \rightleftharpoons 2CO(g)$
Equilibrium constant expression,
$\Rightarrow$ ${K_c} = \dfrac{{{{[CO]}^2}}}{{[C][C{O_2}]}}$
As the concentration of C(s) is constant throughout the reaction, therefore, its concentration or activity can be considered as unity, and it can be ignored in the equilibrium constant expression.
$\Rightarrow$${K_{eq}} = \dfrac{{{{[CO]}^2}}}{{[1][C{O_2}]}}$
$ \Rightarrow {K_{eq}} = \dfrac{{{{[CO]}^2}}}{{[C{O_2}]}}$
Note:
The rate law expression should not be confused with the equilibrium constant expression. Rate law expression for a reaction,
$aA + bB \to cC + dD$
Is given as, $rate = k{[A]^m}{[B]^n}$
Here, the concentration of the reactants is not necessarily raised to the power equal to their stoichiometric coefficients. In this expression, ‘m’ and ‘n’ represent the order of reaction with respect to A and B respectively.
$m + n$ give the overall order of the reaction.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE