
Express $1.3\overline{2}+0.\overline{35}$ as a fraction in the simplest form.
Answer
554.4k+ views
Hint:
A fraction can be defined as a part of a whole. A fraction consists of two parts: numerator and denominator. The simplest form of a fraction is the state when numerator and denominator cannot be divided any further, while still being whole numbers.
Complete step by step solution:
Let $x=1.3\overline{2}=1.322222.......\text{ }.....\left( 1 \right)$
Now, multiplying equation (1) by $10$
$\Rightarrow 10x=13.22222.......\text{ }.....\text{(2)}$
Now again, multiplying equation (2) by
$\Rightarrow 10\times 10x=132.22222........\text{ }.....\left( 3 \right)$
Here, subtracting equation (2) from (3)
$\begin{align}
& \Rightarrow 100x-10x=132.22222-13.22222 \\
& \Rightarrow 90x=119 \\
& \therefore x=\dfrac{119}{90} \\
\end{align}$
Now again, let $y=0.\overline{35}=0.353535........\text{ }.....\left( 4 \right)$
Here, multiplying equation (4) by $100$
$\Rightarrow 100y=35.353535........\text{ }.....\left( 5 \right)$
Subtracting equation (4) from equation (5)
$\begin{align}
& \Rightarrow 100y-y=35.353535-0.353535 \\
& \Rightarrow 99y=35 \\
& \therefore y=\dfrac{35}{99} \\
\end{align}$
We know that,
$\Rightarrow 1.3\overline{2}+0.\overline{35}=x+y$
Hence,
$\begin{align}
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119}{90}+\dfrac{35}{99} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119\times 11+35\times 10}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1309+350}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1659}{990} \\
& \therefore1.3\overline{2}+0.\overline{35}=\dfrac{553}{330} \\
\end{align}$
Hence, the value is $\dfrac{553}{330}$.
Note:
Always keep in mind that the digits needed to be multiplied by $10$ till all the required digits are on the left side. You only want one “set” of repeating digits on the left side of the decimal. For example, in this question the first digit has $2$ as the repeating digit, thus you only want one $2$ on the left of the decimal. In the second number repeating digits are $35$, thus you’d only want one set of $35$ on the left side.
A fraction can be defined as a part of a whole. A fraction consists of two parts: numerator and denominator. The simplest form of a fraction is the state when numerator and denominator cannot be divided any further, while still being whole numbers.
Complete step by step solution:
Let $x=1.3\overline{2}=1.322222.......\text{ }.....\left( 1 \right)$
Now, multiplying equation (1) by $10$
$\Rightarrow 10x=13.22222.......\text{ }.....\text{(2)}$
Now again, multiplying equation (2) by
$\Rightarrow 10\times 10x=132.22222........\text{ }.....\left( 3 \right)$
Here, subtracting equation (2) from (3)
$\begin{align}
& \Rightarrow 100x-10x=132.22222-13.22222 \\
& \Rightarrow 90x=119 \\
& \therefore x=\dfrac{119}{90} \\
\end{align}$
Now again, let $y=0.\overline{35}=0.353535........\text{ }.....\left( 4 \right)$
Here, multiplying equation (4) by $100$
$\Rightarrow 100y=35.353535........\text{ }.....\left( 5 \right)$
Subtracting equation (4) from equation (5)
$\begin{align}
& \Rightarrow 100y-y=35.353535-0.353535 \\
& \Rightarrow 99y=35 \\
& \therefore y=\dfrac{35}{99} \\
\end{align}$
We know that,
$\Rightarrow 1.3\overline{2}+0.\overline{35}=x+y$
Hence,
$\begin{align}
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119}{90}+\dfrac{35}{99} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119\times 11+35\times 10}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1309+350}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1659}{990} \\
& \therefore1.3\overline{2}+0.\overline{35}=\dfrac{553}{330} \\
\end{align}$
Hence, the value is $\dfrac{553}{330}$.
Note:
Always keep in mind that the digits needed to be multiplied by $10$ till all the required digits are on the left side. You only want one “set” of repeating digits on the left side of the decimal. For example, in this question the first digit has $2$ as the repeating digit, thus you only want one $2$ on the left of the decimal. In the second number repeating digits are $35$, thus you’d only want one set of $35$ on the left side.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

One lakh eight thousand how can we write it in num class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE


