![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Express $1.3\overline{2}+0.\overline{35}$ as a fraction in the simplest form.
Answer
461.4k+ views
Hint:
A fraction can be defined as a part of a whole. A fraction consists of two parts: numerator and denominator. The simplest form of a fraction is the state when numerator and denominator cannot be divided any further, while still being whole numbers.
Complete step by step solution:
Let $x=1.3\overline{2}=1.322222.......\text{ }.....\left( 1 \right)$
Now, multiplying equation (1) by $10$
$\Rightarrow 10x=13.22222.......\text{ }.....\text{(2)}$
Now again, multiplying equation (2) by
$\Rightarrow 10\times 10x=132.22222........\text{ }.....\left( 3 \right)$
Here, subtracting equation (2) from (3)
$\begin{align}
& \Rightarrow 100x-10x=132.22222-13.22222 \\
& \Rightarrow 90x=119 \\
& \therefore x=\dfrac{119}{90} \\
\end{align}$
Now again, let $y=0.\overline{35}=0.353535........\text{ }.....\left( 4 \right)$
Here, multiplying equation (4) by $100$
$\Rightarrow 100y=35.353535........\text{ }.....\left( 5 \right)$
Subtracting equation (4) from equation (5)
$\begin{align}
& \Rightarrow 100y-y=35.353535-0.353535 \\
& \Rightarrow 99y=35 \\
& \therefore y=\dfrac{35}{99} \\
\end{align}$
We know that,
$\Rightarrow 1.3\overline{2}+0.\overline{35}=x+y$
Hence,
$\begin{align}
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119}{90}+\dfrac{35}{99} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119\times 11+35\times 10}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1309+350}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1659}{990} \\
& \therefore1.3\overline{2}+0.\overline{35}=\dfrac{553}{330} \\
\end{align}$
Hence, the value is $\dfrac{553}{330}$.
Note:
Always keep in mind that the digits needed to be multiplied by $10$ till all the required digits are on the left side. You only want one “set” of repeating digits on the left side of the decimal. For example, in this question the first digit has $2$ as the repeating digit, thus you only want one $2$ on the left of the decimal. In the second number repeating digits are $35$, thus you’d only want one set of $35$ on the left side.
A fraction can be defined as a part of a whole. A fraction consists of two parts: numerator and denominator. The simplest form of a fraction is the state when numerator and denominator cannot be divided any further, while still being whole numbers.
Complete step by step solution:
Let $x=1.3\overline{2}=1.322222.......\text{ }.....\left( 1 \right)$
Now, multiplying equation (1) by $10$
$\Rightarrow 10x=13.22222.......\text{ }.....\text{(2)}$
Now again, multiplying equation (2) by
$\Rightarrow 10\times 10x=132.22222........\text{ }.....\left( 3 \right)$
Here, subtracting equation (2) from (3)
$\begin{align}
& \Rightarrow 100x-10x=132.22222-13.22222 \\
& \Rightarrow 90x=119 \\
& \therefore x=\dfrac{119}{90} \\
\end{align}$
Now again, let $y=0.\overline{35}=0.353535........\text{ }.....\left( 4 \right)$
Here, multiplying equation (4) by $100$
$\Rightarrow 100y=35.353535........\text{ }.....\left( 5 \right)$
Subtracting equation (4) from equation (5)
$\begin{align}
& \Rightarrow 100y-y=35.353535-0.353535 \\
& \Rightarrow 99y=35 \\
& \therefore y=\dfrac{35}{99} \\
\end{align}$
We know that,
$\Rightarrow 1.3\overline{2}+0.\overline{35}=x+y$
Hence,
$\begin{align}
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119}{90}+\dfrac{35}{99} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119\times 11+35\times 10}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1309+350}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1659}{990} \\
& \therefore1.3\overline{2}+0.\overline{35}=\dfrac{553}{330} \\
\end{align}$
Hence, the value is $\dfrac{553}{330}$.
Note:
Always keep in mind that the digits needed to be multiplied by $10$ till all the required digits are on the left side. You only want one “set” of repeating digits on the left side of the decimal. For example, in this question the first digit has $2$ as the repeating digit, thus you only want one $2$ on the left of the decimal. In the second number repeating digits are $35$, thus you’d only want one set of $35$ on the left side.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write the following in Roman numerals 25819 class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What are the controls affecting the climate of Ind class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The southernmost point of the Indian mainland is known class 7 social studies CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What were the major teachings of Baba Guru Nanak class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What was the approximate time period of the Indus Valley class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
AIM To prepare stained temporary mount of onion peel class 7 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)