
Express 256 as power of 4.
Answer
496.8k+ views
Hint: We first explain the process of exponents and indices. We find the general form. Then we explain the different binary operations on exponents. Finally, we find the indices number for the formula ${{a}^{n}}=\underbrace{a\times a\times a\times ....\times a\times a}_{n-times}$ and express 256 as power of 4.
Complete step by step answer:
The simplified form of the expression ${{a}^{n}}$ can be written as the multiplied form of number $a$ of n-times. Therefore, ${{a}^{n}}=\underbrace{a\times a\times a\times ....\times a\times a}_{n-times}$. The value of $n$ can be any number belonging to the domain of real number. The value of $a$ can be any number belonging to the domain of real number.
The multiplication of these exponents works as the addition of those indices.
For example, we take two exponential expressions where the exponents are $m$ and $n$.
Let the numbers be ${{a}^{m}}$ and ${{a}^{n}}$. We take multiplication of these numbers.
The indices get added. So, ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. We also got ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$.
We find the factorisation of 256 as
\[\begin{align}
& 2\left| \!{\underline {\,
256 \,}} \right. \\
& 2\left| \!{\underline {\,
128 \,}} \right. \\
& 2\left| \!{\underline {\,
64 \,}} \right. \\
& 2\left| \!{\underline {\,
32 \,}} \right. \\
& 2\left| \!{\underline {\,
16 \,}} \right. \\
& 2\left| \!{\underline {\,
8 \,}} \right. \\
& 2\left| \!{\underline {\,
4 \,}} \right. \\
& 2\left| \!{\underline {\,
2 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}\]
So, $256=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2={{2}^{8}}$.
We get ${{2}^{8}}={{2}^{2\times 4}}={{\left( {{2}^{2}} \right)}^{4}}={{4}^{4}}$.
So, expressing 256 as a power of 4, we get ${{2}^{8}}$.
Note: The addition and subtraction for exponents works for taking common terms out depending on the values of the indices. For numbers ${{a}^{m}}$ and ${{a}^{n}}$, we have ${{a}^{m}}\pm {{a}^{n}}={{a}^{m}}\left( 1\pm {{a}^{n-m}} \right)$.the relation is independent of the values of $m$ and $n$.
Complete step by step answer:
The simplified form of the expression ${{a}^{n}}$ can be written as the multiplied form of number $a$ of n-times. Therefore, ${{a}^{n}}=\underbrace{a\times a\times a\times ....\times a\times a}_{n-times}$. The value of $n$ can be any number belonging to the domain of real number. The value of $a$ can be any number belonging to the domain of real number.
The multiplication of these exponents works as the addition of those indices.
For example, we take two exponential expressions where the exponents are $m$ and $n$.
Let the numbers be ${{a}^{m}}$ and ${{a}^{n}}$. We take multiplication of these numbers.
The indices get added. So, ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. We also got ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$.
We find the factorisation of 256 as
\[\begin{align}
& 2\left| \!{\underline {\,
256 \,}} \right. \\
& 2\left| \!{\underline {\,
128 \,}} \right. \\
& 2\left| \!{\underline {\,
64 \,}} \right. \\
& 2\left| \!{\underline {\,
32 \,}} \right. \\
& 2\left| \!{\underline {\,
16 \,}} \right. \\
& 2\left| \!{\underline {\,
8 \,}} \right. \\
& 2\left| \!{\underline {\,
4 \,}} \right. \\
& 2\left| \!{\underline {\,
2 \,}} \right. \\
& 1\left| \!{\underline {\,
1 \,}} \right. \\
\end{align}\]
So, $256=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2={{2}^{8}}$.
We get ${{2}^{8}}={{2}^{2\times 4}}={{\left( {{2}^{2}} \right)}^{4}}={{4}^{4}}$.
So, expressing 256 as a power of 4, we get ${{2}^{8}}$.
Note: The addition and subtraction for exponents works for taking common terms out depending on the values of the indices. For numbers ${{a}^{m}}$ and ${{a}^{n}}$, we have ${{a}^{m}}\pm {{a}^{n}}={{a}^{m}}\left( 1\pm {{a}^{n-m}} \right)$.the relation is independent of the values of $m$ and $n$.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Full form of STD, ISD and PCO

What are the 12 elements of nature class 8 chemistry CBSE

What is the difference between rai and mustard see class 8 biology CBSE

When people say No pun intended what does that mea class 8 english CBSE

Write a short biography of Dr APJ Abdul Kalam under class 8 english CBSE

Compare the manure and fertilizer in maintaining the class 8 biology CBSE

