
Express the following as a product of prime factors:
441
Answer
541.2k+ views
Hint: Try to find the factors of the given number. Distinguish them as prime numbers or not. If all are prime numbers, then express the given number as the product of all of them to get the required result.
Complete step by step answer:
Prime number: we know a prime number is a whole number greater than 1 that cannot be made by multiplying other whole numbers.
Prime factorization: For the prime factorization of a number we have to multiply only the prime numbers together to get the original number.
Now considering the number 441,
441 can be expressed as
$441=3\times 3\times 7\times 7$
From the above, we can conclude that the prime factors of 441 are 3 and 7 as both 3 and 7 are prime numbers.
This is the required solution of the given question.
Note: 441 can also be expressed as the product of two square numbers i.e. 9 and 49. So 441 is itself a square number, whose square root is $\sqrt{441}=\sqrt{9\times 49}=\sqrt{3\times 3\times 7\times 7}=3\times 7=21$. One major application of prime factorization is to find the greatest common factor. If two numbers are given, we have to express them as the product of prime factors. From there we can choose the greatest common factor of both the numbers as the common prime factors.
Complete step by step answer:
Prime number: we know a prime number is a whole number greater than 1 that cannot be made by multiplying other whole numbers.
Prime factorization: For the prime factorization of a number we have to multiply only the prime numbers together to get the original number.
Now considering the number 441,
441 can be expressed as
$441=3\times 3\times 7\times 7$
From the above, we can conclude that the prime factors of 441 are 3 and 7 as both 3 and 7 are prime numbers.
This is the required solution of the given question.
Note: 441 can also be expressed as the product of two square numbers i.e. 9 and 49. So 441 is itself a square number, whose square root is $\sqrt{441}=\sqrt{9\times 49}=\sqrt{3\times 3\times 7\times 7}=3\times 7=21$. One major application of prime factorization is to find the greatest common factor. If two numbers are given, we have to express them as the product of prime factors. From there we can choose the greatest common factor of both the numbers as the common prime factors.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Differentiate between Food chain and Food web class 10 biology CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

A sum of 10000 is invested at the rate of 8 per year class 10 maths CBSE

