Answer
Verified
390.3k+ views
Hint: You need to know the rules for the algebra of complex numbers and the behaviour of iota\[\left( i \right)\] when raised to a certain power in order to solve this question.
Complete step by step solution:
A complex number is a number with two parts: Real and imaginary parts. General form of the complex number is:
\[a+ib\]
Where a is the real part and b is the imaginary part.
Iota \[\left( i \right)\] is defined as the square root of \[-1\].
\[i=\sqrt{-1}\]
A complex number has two parts as mentioned above and either of them can be zero. So all real numbers are complex numbers and all imaginary numbers are also complex numbers.
Let’s see how does the iota \[\left( i \right)\] behave when raised to power,
\[i=\sqrt{-1}\]
\[\begin{align}
& {{i}^{0}}=1 \\
& {{i}^{1}}=i \\
& {{i}^{2}}=-1 \\
& {{i}^{3}}=-i \\
& {{i}^{4}}=1 \\
\end{align}\]
Clearly, we can see the behaviour of \[i\] and the pattern repeats itself in a cycle of four.
Therefore, we can generalise it to
\[\begin{align}
& {{i}^{4k}}=1 \\
& {{i}^{4k+1}}=i \\
& {{i}^{4k+2}}=-1 \\
& {{i}^{4k+3}}=-i \\
\end{align}\]
Now, let’s come to our question,
Given: \[\left( 5i \right)(-\dfrac{3}{5}i)\]
The multiplication is done in the same way as done in the real numbers. Multiply the real number with the real number and imaginary number with the imaginary number.
\[5\times \dfrac{-3}{5}\times i\times i=-3{{i}^{2}}=3=3+0i\] (\[\because \]\[{{i}^{2}}=-1\] )
We can compare it with the general form of complex numbers. It gives that a\[=\]\[3\]and b\[=0\].
Therefore, \[\left( 5i \right)(-\dfrac{3}{5}i)\] $=3+0i$. It means that the imaginary part of this complex number is zero and it is a purely real number equal to \[3\].
Note:
If the real part of a complex number is zero, it is called a purely imaginary number. For example, \[2i,-9i,\dfrac{5}{3}i\] and if the imaginary part of a complex number is zero, it is called a purely real number as seen in the above solution.
Complete step by step solution:
A complex number is a number with two parts: Real and imaginary parts. General form of the complex number is:
\[a+ib\]
Where a is the real part and b is the imaginary part.
Iota \[\left( i \right)\] is defined as the square root of \[-1\].
\[i=\sqrt{-1}\]
A complex number has two parts as mentioned above and either of them can be zero. So all real numbers are complex numbers and all imaginary numbers are also complex numbers.
Let’s see how does the iota \[\left( i \right)\] behave when raised to power,
\[i=\sqrt{-1}\]
\[\begin{align}
& {{i}^{0}}=1 \\
& {{i}^{1}}=i \\
& {{i}^{2}}=-1 \\
& {{i}^{3}}=-i \\
& {{i}^{4}}=1 \\
\end{align}\]
Clearly, we can see the behaviour of \[i\] and the pattern repeats itself in a cycle of four.
Therefore, we can generalise it to
\[\begin{align}
& {{i}^{4k}}=1 \\
& {{i}^{4k+1}}=i \\
& {{i}^{4k+2}}=-1 \\
& {{i}^{4k+3}}=-i \\
\end{align}\]
Now, let’s come to our question,
Given: \[\left( 5i \right)(-\dfrac{3}{5}i)\]
The multiplication is done in the same way as done in the real numbers. Multiply the real number with the real number and imaginary number with the imaginary number.
\[5\times \dfrac{-3}{5}\times i\times i=-3{{i}^{2}}=3=3+0i\] (\[\because \]\[{{i}^{2}}=-1\] )
We can compare it with the general form of complex numbers. It gives that a\[=\]\[3\]and b\[=0\].
Therefore, \[\left( 5i \right)(-\dfrac{3}{5}i)\] $=3+0i$. It means that the imaginary part of this complex number is zero and it is a purely real number equal to \[3\].
Note:
If the real part of a complex number is zero, it is called a purely imaginary number. For example, \[2i,-9i,\dfrac{5}{3}i\] and if the imaginary part of a complex number is zero, it is called a purely real number as seen in the above solution.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What was the Metternich system and how did it provide class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE