Answer
Verified
367.2k+ views
Hint: In the given question ,we need to express the given complex number in the form of \[a + ib\]
Mathematically, a complex number is a number that can be expressed in the form of \[a + ib\] where \[a\] and \[b\]are real numbers and \[i\] symbol represents the imaginary unit . The set of complex numbers is basically denoted by \[C\].
Formula used :
\[\left( a – b \right)^{2} = a^{2} + b^{2} – 2ab\]
Complete answer: Given \[\left( 1 – i \right)^{4}\]
\[\left( 1 – I \right)^{4} = \left( \left( 1 – i \right)^{2} \right)^{2}\]
By expanding,
We get,
\[= \left( 1 – i \right)^{2}\left( 1 – i \right)^{2}\]
Using the formula, we can expand it
\[= {(1}^{2} + i^{2} – 2 \times 1 \times i)(1^{2} + i^{2} – 2 \times 1 \times i)\]
\[= \left( 1 + i^{2} – 2i \right)\left( 1 + i^{2} – 2i \right)\]
\[= \left( 1 – 1 – 2i \right)\left( 1 – 1 – 2i \right)\]
\[= \left( 0 – 2i \right)\left( 0 – 2i \right)\]
On further simplifying,
We get,
\[= \left( - 2i \right)\left( - 2i \right)\]
By multiplying,
We get,
\[= 4i^{2}\]
By putting \[i^{2} = - 1\]
\[= 4\left( - 1 \right)\]
By multiplying,
We get,
\[= - 4\]
We need to express the value in the form of \[a + ib\ \]
\[= - 4 + 0\]
\[= - 4 + 0i\]
Thus \[\left( i– 4 \right)^{2} = - 4 + 0i\]
Final answer :
\[\left( I – 4 \right)^{2} = - 4 + 0i\]
Note:
We already know that \[i^{2} = - 1\ \]. Example for Complex number is \[2 + 3i\] . Complex number consists of two parts namely the real part and the imaginary part. It is the sum of real numbers and Imaginary numbers. In the general form \[a + ib\ \] Here \[a\] is the Real part and \[{ib}\] is the imaginary part. It also helps to find the square root of negative numbers. Imaginary part is denoted by \[Im(z)\ \] and the real part is denoted by \[Re(z)\] .
Mathematically, a complex number is a number that can be expressed in the form of \[a + ib\] where \[a\] and \[b\]are real numbers and \[i\] symbol represents the imaginary unit . The set of complex numbers is basically denoted by \[C\].
Formula used :
\[\left( a – b \right)^{2} = a^{2} + b^{2} – 2ab\]
Complete answer: Given \[\left( 1 – i \right)^{4}\]
\[\left( 1 – I \right)^{4} = \left( \left( 1 – i \right)^{2} \right)^{2}\]
By expanding,
We get,
\[= \left( 1 – i \right)^{2}\left( 1 – i \right)^{2}\]
Using the formula, we can expand it
\[= {(1}^{2} + i^{2} – 2 \times 1 \times i)(1^{2} + i^{2} – 2 \times 1 \times i)\]
\[= \left( 1 + i^{2} – 2i \right)\left( 1 + i^{2} – 2i \right)\]
\[= \left( 1 – 1 – 2i \right)\left( 1 – 1 – 2i \right)\]
\[= \left( 0 – 2i \right)\left( 0 – 2i \right)\]
On further simplifying,
We get,
\[= \left( - 2i \right)\left( - 2i \right)\]
By multiplying,
We get,
\[= 4i^{2}\]
By putting \[i^{2} = - 1\]
\[= 4\left( - 1 \right)\]
By multiplying,
We get,
\[= - 4\]
We need to express the value in the form of \[a + ib\ \]
\[= - 4 + 0\]
\[= - 4 + 0i\]
Thus \[\left( i– 4 \right)^{2} = - 4 + 0i\]
Final answer :
\[\left( I – 4 \right)^{2} = - 4 + 0i\]
Note:
We already know that \[i^{2} = - 1\ \]. Example for Complex number is \[2 + 3i\] . Complex number consists of two parts namely the real part and the imaginary part. It is the sum of real numbers and Imaginary numbers. In the general form \[a + ib\ \] Here \[a\] is the Real part and \[{ib}\] is the imaginary part. It also helps to find the square root of negative numbers. Imaginary part is denoted by \[Im(z)\ \] and the real part is denoted by \[Re(z)\] .
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE