
How many faces and edges does a triangular prism have?
Answer
601.5k+ views
Hint: Draw any triangular prism using the fact that a triangular prism is a three-sided prism. Count the number of its faces and vertices. Use the formula $f+v-e=2$, where f denotes the number of faces, v denotes the number of vertices and e denotes the number of edges, to count the number of vertices of the prism.
Complete step-by-step answer:
We have to find out the number of faces and edges of a triangular prism.
We know that a triangular prism is a three-sided prism. It’s a polyhedron made of 2 triangular bases and 3 rectangular faces joining sides.
We observe that this triangular prism has 5 faces – 2 triangular bases and 3 rectangular faces joining sides. We observe that the triangular prism has 6 edges – A, B, C, D, E, and F.
We can now count the number of edges of the prism, or, we can use the formula $f+v-e=2$, where f denotes the number of faces, v denotes the number of vertices and e denotes the number of edges to count the number of vertices of the prism.
Substituting $f=5,v=6$ in the above formula, we have $5+6-e=2$.
Rearranging the terms, we have $e=11-2=9$.
Thus, the prism has 9 edges. We can also count these edges by looking at the prism.
Hence, the triangular prism has 5 faces and 9 edges.
Note: It’s difficult to count the number of edges on the prism from a diagram due to its 3 – D orientation. Thus, it’s better to use the relation given between the number of edges, vertices, and faces to count the number of edges of the prism.
Complete step-by-step answer:
We have to find out the number of faces and edges of a triangular prism.
We know that a triangular prism is a three-sided prism. It’s a polyhedron made of 2 triangular bases and 3 rectangular faces joining sides.
We observe that this triangular prism has 5 faces – 2 triangular bases and 3 rectangular faces joining sides. We observe that the triangular prism has 6 edges – A, B, C, D, E, and F.
We can now count the number of edges of the prism, or, we can use the formula $f+v-e=2$, where f denotes the number of faces, v denotes the number of vertices and e denotes the number of edges to count the number of vertices of the prism.
Substituting $f=5,v=6$ in the above formula, we have $5+6-e=2$.
Rearranging the terms, we have $e=11-2=9$.
Thus, the prism has 9 edges. We can also count these edges by looking at the prism.
Hence, the triangular prism has 5 faces and 9 edges.
Note: It’s difficult to count the number of edges on the prism from a diagram due to its 3 – D orientation. Thus, it’s better to use the relation given between the number of edges, vertices, and faces to count the number of edges of the prism.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

