Answer
Verified
460.8k+ views
Hint: Start by opening the braces of the given quadratic equation, group different terms by rearranging the terms. Take the common terms out and repeat the same procedure for other leftover terms and we will get the required simplified solution.
Complete step-by-step answer:
Given,
${a^2}(b + c) + {b^2}(a + c) + {c^2}(a + b) + 2abc$
Let us open the brackets and multiply the terms , then we have
$ = {a^2}b + {a^2}c + a{b^2} + {b^2}c + a{c^2} + b{c^2} + 2abc$
Now let us rearrange the terms and group them
$ = ({a^2}b + 2abc + b{c^2}) + {a^2}c + a{b^2} + {b^2}c + a{c^2}$
Now , let us take b as common from the first grouped terms, we will get
$ = b({a^2} + 2ac + {c^2}) + {a^2}c + a{b^2} + {b^2}c + a{c^2}$
Now , we see that first grouped term forms a complete square , so we will have
$ = b{(a + c)^2} + {a^2}c + a{b^2} + {b^2}c + a{c^2}$
Now let us rearrange the other terms as well, we will get
$ = b{(a + c)^2} + ({a^2}c + a{c^2}) + (a{b^2} + {b^2}c)$
Now taking $ac$ and ${b^2}$ common from second and third grouped terms respectively, we will get
$ = b{(a + c)^2} + ac(c + a) + {b^2}(a + c)$
Now taking (a + c) as common from all the terms , we will get
$ = (a + c)\left[ {b(a + c) + ac + {b^2}} \right]$
Now , let us solve inside the square brackets , so that we can extract some more common terms, we will get
$ = (a + c)\left[ {ba + bc + ac + {b^2}} \right]$
Rearranging the terms, we will get
$ = (a + c)\left[ {(ba + ac) + (bc + {b^2})} \right]$
Taking a and b common from first and second group , we will get
$ = (a + c)\left[ {a(b + c) + b(c + b)} \right]$
Now taking (b + c) as common , we will get
$ = (a + c)\left[ {(b + c)(a + b)} \right]$
So , the factorization of ${a^2}(b + c) + {b^2}(a + c) + {c^2}(a + b) + 2abc$ results to $ (a + c)(b + c)(a + b)$.
Note: Similar questions involving factorization can be solved by following the above mentioned procedure . Attention must be given while taking common and rearranging the terms as there are a lot of chances of committing a mistake during this process which could lead to wrong answers only.
Complete step-by-step answer:
Given,
${a^2}(b + c) + {b^2}(a + c) + {c^2}(a + b) + 2abc$
Let us open the brackets and multiply the terms , then we have
$ = {a^2}b + {a^2}c + a{b^2} + {b^2}c + a{c^2} + b{c^2} + 2abc$
Now let us rearrange the terms and group them
$ = ({a^2}b + 2abc + b{c^2}) + {a^2}c + a{b^2} + {b^2}c + a{c^2}$
Now , let us take b as common from the first grouped terms, we will get
$ = b({a^2} + 2ac + {c^2}) + {a^2}c + a{b^2} + {b^2}c + a{c^2}$
Now , we see that first grouped term forms a complete square , so we will have
$ = b{(a + c)^2} + {a^2}c + a{b^2} + {b^2}c + a{c^2}$
Now let us rearrange the other terms as well, we will get
$ = b{(a + c)^2} + ({a^2}c + a{c^2}) + (a{b^2} + {b^2}c)$
Now taking $ac$ and ${b^2}$ common from second and third grouped terms respectively, we will get
$ = b{(a + c)^2} + ac(c + a) + {b^2}(a + c)$
Now taking (a + c) as common from all the terms , we will get
$ = (a + c)\left[ {b(a + c) + ac + {b^2}} \right]$
Now , let us solve inside the square brackets , so that we can extract some more common terms, we will get
$ = (a + c)\left[ {ba + bc + ac + {b^2}} \right]$
Rearranging the terms, we will get
$ = (a + c)\left[ {(ba + ac) + (bc + {b^2})} \right]$
Taking a and b common from first and second group , we will get
$ = (a + c)\left[ {a(b + c) + b(c + b)} \right]$
Now taking (b + c) as common , we will get
$ = (a + c)\left[ {(b + c)(a + b)} \right]$
So , the factorization of ${a^2}(b + c) + {b^2}(a + c) + {c^2}(a + b) + 2abc$ results to $ (a + c)(b + c)(a + b)$.
Note: Similar questions involving factorization can be solved by following the above mentioned procedure . Attention must be given while taking common and rearranging the terms as there are a lot of chances of committing a mistake during this process which could lead to wrong answers only.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE