
Factorise the given algebraic expression
${{x}^{4}}+4{{y}^{4}}$
Answer
601.2k+ views
Hint: Add and subtract $4{{x}^{2}}{{y}^{2}}$ to the expression. Use the formula ${{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}$ followed by the use of the formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Complete Complete step by step answer:
Before solving the question, we need to know the meaning of factorisation. Consider two algebraic expressions ${{a}^{2}}-{{b}^{2}}$ and $\left( a+b \right)\left( a-b \right)$. Let us simplify the latter expression. Applying distributive property we get $\left( a+b \right)\left( a-b \right)=\left( a+b \right)a-\left( a+b \right)b$
Applying distributive property again we get
$\left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-\left[ ab+{{b}^{2}} \right]$
Simplifying, we get
$\begin{align}
& \left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-ab-{{b}^{2}} \\
& ={{a}^{2}}-{{b}^{2}} \\
\end{align}$
Hence the two expressions are equal.
The expression $\left( a+b \right)\left( a-b \right)$is said to be factorised form of ${{a}^{2}}-{{b}^{2}}$. When factorising an expression, we make use of algebraic identities like ${{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}$,${{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}}$,${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, etc. In this question, we will make use of the identities ${{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}$ and ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to factorise the given expression
We will first complete the square.
Step 1: Express in form \[{{a}^{2}}+{{b}^{2}}\]
We have
${{x}^{4}}+4{{y}^{4}}={{\left( {{x}^{2}} \right)}^{2}}+{{\left( 2{{y}^{2}} \right)}^{2}}$
Step 2: Add and subtract 2ab
Here $a={{x}^{2}}$ and $b=2{{y}^{2}}$.
So, we have $2ab=2{{x}^{2}}\left( 2{{y}^{2}} \right)=4{{x}^{2}}{{y}^{2}}$
Adding and subtracting $4{{x}^{2}}{{y}^{2}}$ we get
$\begin{align}
& {{x}^{4}}+4{{y}^{4}}={{\left( {{x}^{2}} \right)}^{2}}+{{\left( 2{{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{y}^{2}} \\
& ={{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}-4{{x}^{2}}{{y}^{2}} \\
\end{align}$
Now we will write the above expression in the form of ${{a}^{2}}-{{b}^{2}}$
We have
${{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}-4{{x}^{2}}{{y}^{2}}={{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}-{{\left( 2xy \right)}^{2}}$
Hence we have
${{x}^{4}}+4{{y}^{4}}={{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}-{{\left( 2xy \right)}^{2}}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Using the above formula we get
${{x}^{4}}+4{{y}^{4}}=\left( {{x}^{2}}+2{{y}^{2}}-2xy \right)\left( {{x}^{2}}+2{{y}^{2}}+2xy \right)$ which is in factorised form.
Note: In step 2 we need to combine ${{\left( {{x}^{2}} \right)}^{2}}+{{\left( 2{{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}$ to get ${{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}$ and not ${{\left( {{x}^{2}} \right)}^{2}}+{{\left( 2{{y}^{2}} \right)}^{2}}-4{{x}^{2}}{{y}^{2}}$ to get ${{\left( {{x}^{2}}-2{{y}^{2}} \right)}^{2}}$ because the former leads to an expression of the form ${{a}^{2}}-{{b}^{2}}$ whereas the latter leads to an expression of the form ${{a}^{2}}+{{b}^{2}}$. ${{a}^{2}}-{{b}^{2}}$ can be factorised whereas ${{a}^{2}}+{{b}^{2}}$ cannot.
Complete Complete step by step answer:
Before solving the question, we need to know the meaning of factorisation. Consider two algebraic expressions ${{a}^{2}}-{{b}^{2}}$ and $\left( a+b \right)\left( a-b \right)$. Let us simplify the latter expression. Applying distributive property we get $\left( a+b \right)\left( a-b \right)=\left( a+b \right)a-\left( a+b \right)b$
Applying distributive property again we get
$\left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-\left[ ab+{{b}^{2}} \right]$
Simplifying, we get
$\begin{align}
& \left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-ab-{{b}^{2}} \\
& ={{a}^{2}}-{{b}^{2}} \\
\end{align}$
Hence the two expressions are equal.
The expression $\left( a+b \right)\left( a-b \right)$is said to be factorised form of ${{a}^{2}}-{{b}^{2}}$. When factorising an expression, we make use of algebraic identities like ${{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}$,${{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}}$,${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, etc. In this question, we will make use of the identities ${{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}$ and ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to factorise the given expression
We will first complete the square.
Step 1: Express in form \[{{a}^{2}}+{{b}^{2}}\]
We have
${{x}^{4}}+4{{y}^{4}}={{\left( {{x}^{2}} \right)}^{2}}+{{\left( 2{{y}^{2}} \right)}^{2}}$
Step 2: Add and subtract 2ab
Here $a={{x}^{2}}$ and $b=2{{y}^{2}}$.
So, we have $2ab=2{{x}^{2}}\left( 2{{y}^{2}} \right)=4{{x}^{2}}{{y}^{2}}$
Adding and subtracting $4{{x}^{2}}{{y}^{2}}$ we get
$\begin{align}
& {{x}^{4}}+4{{y}^{4}}={{\left( {{x}^{2}} \right)}^{2}}+{{\left( 2{{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}-4{{x}^{2}}{{y}^{2}} \\
& ={{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}-4{{x}^{2}}{{y}^{2}} \\
\end{align}$
Now we will write the above expression in the form of ${{a}^{2}}-{{b}^{2}}$
We have
${{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}-4{{x}^{2}}{{y}^{2}}={{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}-{{\left( 2xy \right)}^{2}}$
Hence we have
${{x}^{4}}+4{{y}^{4}}={{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}-{{\left( 2xy \right)}^{2}}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Using the above formula we get
${{x}^{4}}+4{{y}^{4}}=\left( {{x}^{2}}+2{{y}^{2}}-2xy \right)\left( {{x}^{2}}+2{{y}^{2}}+2xy \right)$ which is in factorised form.
Note: In step 2 we need to combine ${{\left( {{x}^{2}} \right)}^{2}}+{{\left( 2{{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}$ to get ${{\left( {{x}^{2}}+2{{y}^{2}} \right)}^{2}}$ and not ${{\left( {{x}^{2}} \right)}^{2}}+{{\left( 2{{y}^{2}} \right)}^{2}}-4{{x}^{2}}{{y}^{2}}$ to get ${{\left( {{x}^{2}}-2{{y}^{2}} \right)}^{2}}$ because the former leads to an expression of the form ${{a}^{2}}-{{b}^{2}}$ whereas the latter leads to an expression of the form ${{a}^{2}}+{{b}^{2}}$. ${{a}^{2}}-{{b}^{2}}$ can be factorised whereas ${{a}^{2}}+{{b}^{2}}$ cannot.
Recently Updated Pages
The time period of a satellite of earth is 5 hours class 10 physics CBSE

What is the difference between the ionic radius and class 12 chemistry CBSE

What is the difference between Vapor pressure and Partial class 11 chemistry CBSE

Why is a convex mirror used instead of a plane mirror class 10 physics CBSE

Which one is called the graveyard of RBCs A Liver B class 12 biology CBSE

When 229J of energy is supplied as a heat at constant class 11 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE


