Answer
Verified
449.7k+ views
Hint: We know that Pascal’s law states that pressure is the same at all points in a horizontal plane and it increases with increase in depth from the surface of the liquid. The total pressure at a certain depth is equal to the sum of atmospheric pressure and pressure due to the height.
Complete step by step answer:
The figure shows a container which is filled with a liquid of density $\rho $ . The four points A, B, C and D lie on the diametrically opposite points of a circle that is shown in the figure i.e., A and C are the endpoints of one diameter and B and D are the endpoints of another diameter.
According to Pascal’s law, pressure is the same at all points on a horizontal plane in a stationary liquid i.e., a liquid which is in a rest position. Hence, pressure at D $\left( {{p_D}} \right)$ is the same as pressure at B $\left( {{p_B}} \right)$ since both the points B and D lie on the same horizontal line. Therefore, option A is correct.
Also, we know that pressure at a point inside the liquid increases with the depth from the free surface of the liquid. Thus, pressure at A is less than pressure at B as B is at a higher depth than A and pressure at D is less than pressure at C as C is at a higher depth than D. Due to symmetry i.e., all the four points lie at the quarter of a circle. Hence, ${p_A} < {p_B} = {p_D} < {p_C}$ Therefore, option B is also correct.
The total pressure in a liquid at a depth $d = {P_o} + \rho gd$ .
Pressure at C $\left( {{p_o}} \right) = {P_o} + \rho g\left( {h + 2r} \right)$ where ${P_o}$ is the atmospheric pressure, g is the acceleration due to gravity and h is the height of the liquid column from the upper surface of the liquid to point A and 2r is the distance between point A and C. r is the radius of the circle. [eqn.1]
Pressure at A $\left( {{p_A}} \right) = {P_o} + \rho gh$ [eqn.2]
Now, we add eqn.1 and eqn.2
${p_A} + {p_C} = {P_o} + \rho gh + \rho g\left( {2r} \right) + {P_o} + \rho gh$
${p_C} + {p_A} = 2{P_o} + 2\rho gh + 2\rho gr$
$\dfrac{{{p_C} + {p_A}}}{2} = {P_o} + \rho gh + \rho gr$ [eqn.3]
Pressure at B $\left( {{p_B}} \right) = {P_o} + \rho g\left( {h + r} \right)$
${p_B} = {P_o} + \rho gh + \rho gr$ and ${p_D} = {P_o} + \rho gh + \rho gr$ as both lie at the same line. [eqn.4]
From eqn.3 and eqn.4, we get
$\dfrac{{{p_C} + {p_A}}}{2} = {p_B} = {p_D}$
Thus, option C is incorrect.
Therefore, option D is correct.
Note: We should remember that pressure in a liquid is the same at all points at the same depth from the given surface and pressure increases with the increase in the depth of liquid from the surface.Moreover, the pressure is thrust per unit area, hence it is directly proportional to thrust and inversely proportional to area. The units used for pressure is pounds per square inch, Newtons per square meter, or Pascals.
Complete step by step answer:
The figure shows a container which is filled with a liquid of density $\rho $ . The four points A, B, C and D lie on the diametrically opposite points of a circle that is shown in the figure i.e., A and C are the endpoints of one diameter and B and D are the endpoints of another diameter.
According to Pascal’s law, pressure is the same at all points on a horizontal plane in a stationary liquid i.e., a liquid which is in a rest position. Hence, pressure at D $\left( {{p_D}} \right)$ is the same as pressure at B $\left( {{p_B}} \right)$ since both the points B and D lie on the same horizontal line. Therefore, option A is correct.
Also, we know that pressure at a point inside the liquid increases with the depth from the free surface of the liquid. Thus, pressure at A is less than pressure at B as B is at a higher depth than A and pressure at D is less than pressure at C as C is at a higher depth than D. Due to symmetry i.e., all the four points lie at the quarter of a circle. Hence, ${p_A} < {p_B} = {p_D} < {p_C}$ Therefore, option B is also correct.
The total pressure in a liquid at a depth $d = {P_o} + \rho gd$ .
Pressure at C $\left( {{p_o}} \right) = {P_o} + \rho g\left( {h + 2r} \right)$ where ${P_o}$ is the atmospheric pressure, g is the acceleration due to gravity and h is the height of the liquid column from the upper surface of the liquid to point A and 2r is the distance between point A and C. r is the radius of the circle. [eqn.1]
Pressure at A $\left( {{p_A}} \right) = {P_o} + \rho gh$ [eqn.2]
Now, we add eqn.1 and eqn.2
${p_A} + {p_C} = {P_o} + \rho gh + \rho g\left( {2r} \right) + {P_o} + \rho gh$
${p_C} + {p_A} = 2{P_o} + 2\rho gh + 2\rho gr$
$\dfrac{{{p_C} + {p_A}}}{2} = {P_o} + \rho gh + \rho gr$ [eqn.3]
Pressure at B $\left( {{p_B}} \right) = {P_o} + \rho g\left( {h + r} \right)$
${p_B} = {P_o} + \rho gh + \rho gr$ and ${p_D} = {P_o} + \rho gh + \rho gr$ as both lie at the same line. [eqn.4]
From eqn.3 and eqn.4, we get
$\dfrac{{{p_C} + {p_A}}}{2} = {p_B} = {p_D}$
Thus, option C is incorrect.
Therefore, option D is correct.
Note: We should remember that pressure in a liquid is the same at all points at the same depth from the given surface and pressure increases with the increase in the depth of liquid from the surface.Moreover, the pressure is thrust per unit area, hence it is directly proportional to thrust and inversely proportional to area. The units used for pressure is pounds per square inch, Newtons per square meter, or Pascals.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE