Answer
Verified
438.6k+ views
Hint: In isothermal, reversible process, the temperature remains constant. In that case, the work done is given by the area under the curve in the PV diagram. The area under the curve is the maximum for the process which involves more pressure.
Complete answer:
In thermodynamics, when the state of the gas changes to A to B, the work done involve in this process is expressed as,
\[{W_{A \to B}} = \int\limits_{{V_A}}^{{V_B}} {PdV} \]
Here, P is the pressure of the gas and \[dV\] is the change in the volume of the gas.
We know that in an isothermal, reversible process, the temperature remains constant. In that case, the work done simply given by the area under the curve in the PV diagram.
If we look at the figure shown above, we can easily deduce that the area under the curve traced by I has more area than the rest of the curves. Therefore, the work done in the process followed by I is the maximum.
Thus, the correct answer is option D.
Additional information:
We can express the ideal gas equation as, \[PV = NkT\], where, N is the number of molecules and T is the temperature. From the above equation, we can write,
\[P = \dfrac{{NkT}}{V}\]
Therefore, work done by the gas is can be expressed as,
\[{W_{A \to B}} = \int\limits_{{V_A}}^{{V_B}} {\dfrac{{NkT}}{V}dV} \]
\[ \therefore {W_{A \to B}} = NkT\ln \dfrac{{{V_B}}}{{{V_A}}}\]
Note: The process followed by I and IV is the isobaric process where the pressure does not change. The process followed by II may be an isothermal process. However, the work done involved in each process is the area under the curve and the area under the curve is the maximum when the pressure is the maximum.
Complete answer:
In thermodynamics, when the state of the gas changes to A to B, the work done involve in this process is expressed as,
\[{W_{A \to B}} = \int\limits_{{V_A}}^{{V_B}} {PdV} \]
Here, P is the pressure of the gas and \[dV\] is the change in the volume of the gas.
We know that in an isothermal, reversible process, the temperature remains constant. In that case, the work done simply given by the area under the curve in the PV diagram.
If we look at the figure shown above, we can easily deduce that the area under the curve traced by I has more area than the rest of the curves. Therefore, the work done in the process followed by I is the maximum.
Thus, the correct answer is option D.
Additional information:
We can express the ideal gas equation as, \[PV = NkT\], where, N is the number of molecules and T is the temperature. From the above equation, we can write,
\[P = \dfrac{{NkT}}{V}\]
Therefore, work done by the gas is can be expressed as,
\[{W_{A \to B}} = \int\limits_{{V_A}}^{{V_B}} {\dfrac{{NkT}}{V}dV} \]
\[ \therefore {W_{A \to B}} = NkT\ln \dfrac{{{V_B}}}{{{V_A}}}\]
Note: The process followed by I and IV is the isobaric process where the pressure does not change. The process followed by II may be an isothermal process. However, the work done involved in each process is the area under the curve and the area under the curve is the maximum when the pressure is the maximum.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE