Answer
Verified
470.7k+ views
Hint: To solve this question, we will use the perimeter property of similar triangles which states that – The ratio of perimeters of two similar triangles is equal to the ratio of their corresponding sides that is
$\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{a_1}}}{{{a_2}}}$ , where${P_1}$, ${P_2}$ and ${a_1}$and ${a_2}$are the perimeters and the corresponding sides of the two similar triangles respectively.
Complete step-by-step answer:
According to the question, it is given that there are two similar triangles whose perimeters are 25 cm and 15 cm respectively and one of its corresponding sides is 9cm, so we need to find the value of the other corresponding side of the second triangle.
So, let the perimeter of the first triangle be${P_1}$=25 cm and the perimeter of the second triangle be ${P_2}$=15cm. Let one side of the first triangle be ${a_1}$=9cm, and the corresponding side of the second triangle be${a_2}$.
Now, from the perimeter property of similar triangles we know that the ratio of perimeters of two similar triangles is equal to the ratio of their corresponding sides that is
$\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{a_1}}}{{{a_2}}}$
So, to find the value of ${a_2}$we will put the values of ${P_1}$=25, ${P_2}$=15cm and ${a_1}$=9cm, we will get the equation as:
$
\dfrac{{25}}{{15}} = \dfrac{9}{{{a_2}}} \\
\Rightarrow \dfrac{5}{3} = \dfrac{9}{{{a_2}}} \\
\Rightarrow {a_2} = \dfrac{{3 \times 9}}{5} \\
\Rightarrow {a_2} = 5.4cm \\
$
Therefore, the length of the corresponding side of the second triangle is 5.4cm.
Hence, we will fill up the blank of the given statement with 5.4cm.
Note: Just like the perimeter property there is the area property of proportionality as well for similar triangles, which states that the ratio of areas of two similar triangles is equal to the ratio of the squares of their corresponding sides
$\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{a_1}}}{{{a_2}}}$ , where${P_1}$, ${P_2}$ and ${a_1}$and ${a_2}$are the perimeters and the corresponding sides of the two similar triangles respectively.
Complete step-by-step answer:
According to the question, it is given that there are two similar triangles whose perimeters are 25 cm and 15 cm respectively and one of its corresponding sides is 9cm, so we need to find the value of the other corresponding side of the second triangle.
So, let the perimeter of the first triangle be${P_1}$=25 cm and the perimeter of the second triangle be ${P_2}$=15cm. Let one side of the first triangle be ${a_1}$=9cm, and the corresponding side of the second triangle be${a_2}$.
Now, from the perimeter property of similar triangles we know that the ratio of perimeters of two similar triangles is equal to the ratio of their corresponding sides that is
$\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{a_1}}}{{{a_2}}}$
So, to find the value of ${a_2}$we will put the values of ${P_1}$=25, ${P_2}$=15cm and ${a_1}$=9cm, we will get the equation as:
$
\dfrac{{25}}{{15}} = \dfrac{9}{{{a_2}}} \\
\Rightarrow \dfrac{5}{3} = \dfrac{9}{{{a_2}}} \\
\Rightarrow {a_2} = \dfrac{{3 \times 9}}{5} \\
\Rightarrow {a_2} = 5.4cm \\
$
Therefore, the length of the corresponding side of the second triangle is 5.4cm.
Hence, we will fill up the blank of the given statement with 5.4cm.
Note: Just like the perimeter property there is the area property of proportionality as well for similar triangles, which states that the ratio of areas of two similar triangles is equal to the ratio of the squares of their corresponding sides
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE