Answer
Verified
479.1k+ views
- Hint – Here we will proceed by using the concept of Newton’s second law of motion that is $F = m \times a$ (force $ = $ mass $ \times $acceleration). Acceleration $ = \dfrac{{Force}}{{Mass}}$.
Complete step-by-step solution -
Acceleration due to gravity is independent of mass. These two quantities are independent of each other. Light objects accelerate more slowly than heavy objects when forces other than gravity are also at work. In this case the object is falling but is not considered as a free fall.
A body of mass m falling under the influence of gravity has a force given as –
$F = \dfrac{{GMm}}{{{R^2}}}$
Here, G is gravitational constant
M- mass of 1st body
m-mass of 2nd body
R- distance between two bodies.
Here, M is the mass of Earth and R is the radius of Earth.
Also this force is the weight of the body which is given as
$F = mg$ $ \to $ weight
Thus, we get
$\dfrac{{GMm}}{{{R^2}}} = mg$
$g = \dfrac{{GM}}{{{R^2}}}$
All these are constants and do not change.
So we can say that
Value of g remains constant. G is a universal constant.
It does not depend upon the mass of the body falling.
Note – Whenever we come up with this type of question, one must know that acceleration due to gravity does not depend upon the mass of the object. Then we write the formula of force and calculate the acceleration due to gravity. (Here by using the formula we calculate acceleration due to gravity is independent of mass).
Complete step-by-step solution -
Acceleration due to gravity is independent of mass. These two quantities are independent of each other. Light objects accelerate more slowly than heavy objects when forces other than gravity are also at work. In this case the object is falling but is not considered as a free fall.
A body of mass m falling under the influence of gravity has a force given as –
$F = \dfrac{{GMm}}{{{R^2}}}$
Here, G is gravitational constant
M- mass of 1st body
m-mass of 2nd body
R- distance between two bodies.
Here, M is the mass of Earth and R is the radius of Earth.
Also this force is the weight of the body which is given as
$F = mg$ $ \to $ weight
Thus, we get
$\dfrac{{GMm}}{{{R^2}}} = mg$
$g = \dfrac{{GM}}{{{R^2}}}$
All these are constants and do not change.
So we can say that
Value of g remains constant. G is a universal constant.
It does not depend upon the mass of the body falling.
Note – Whenever we come up with this type of question, one must know that acceleration due to gravity does not depend upon the mass of the object. Then we write the formula of force and calculate the acceleration due to gravity. (Here by using the formula we calculate acceleration due to gravity is independent of mass).
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE