
What is the final velocity of an electron accelerating through a potential of \[{\text{1600 V}}\] if its initial velocity is zero?
A) \[{\text{2}}{\text{.37}} \times {\text{1}}{{\text{0}}^7}{\text{ m/s}}\]
B) \[{\text{2}}{\text{.37}} \times {\text{1}}{{\text{0}}^8}{\text{ m/s}}\]
C) \[{\text{2}}{\text{.37}} \times {\text{1}}{{\text{0}}^6}{\text{ m/s}}\]
D) \[{\text{2}}{\text{.37}} \times {\text{1}}{{\text{0}}^5}{\text{ m/s}}\]
Answer
582.6k+ views
Hint: Obtain the final velocity of the electron by equating the equations for the kinetic energy of the moving electron and the energy of the electron accelerated by applying a potential.
Complete step by step answer:
In the question, the potential through which an electron is accelerated is given. The initial velocity is zero. You have to find the final velocity of the electron.
When an electron is accelerated by applying a potential, the energy of the electron is given by the expression \[{\text{E = eV }}...{\text{ }}...\left( 1 \right)\].
Here, E is the energy of the electron, e is the charge on the electron and V is the potential through which the electron is accelerated.
When an electron is moving with a speed u, its kinetic energy is given by the expression \[{\text{E = }}\dfrac{1}{2}{\text{m}}{{\text{u}}^2}{\text{ }}...{\text{ }}...\left( 2 \right)\].
Here, E is the kinetic energy, m is the mass of the electron and u is the velocity of the electron.
But the energies represented by two equations (1) and (2) are the same.
\[{\text{eV = }}\dfrac{1}{2}{\text{m}}{{\text{u}}^2} \\
{{\text{u}}^2} = \dfrac{{{\text{2eV}}}}{{\text{m}}} \\
{\text{u}} = \sqrt {\dfrac{{{\text{2eV}}}}{{\text{m}}}} \\\]
Substitute values in the above expression and calculate the final velocity of the electron.
\[{\text{u}} = \sqrt {\dfrac{{{\text{2eV}}}}{{\text{m}}}} \\
= \sqrt {\dfrac{{{\text{2}} \times {\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{ - 19}} \times {\text{1600}}}}{{9.1 \times {{10}^{ - 31}}}}} \\
= 2.37 \times {10^7}{\text{ m/s}} \\\]
Thus, the final velocity of an electron is \[2.37 \times {10^7}{\text{ m/s}}\].
Hence, the option A ) is the correct option.
Note: When an electric field is applied to the electron at rest, the electron is accelerated. The kinetic energy of the electron after acceleration is equal to the energy of the electron in presence of the applied electric field.
Complete step by step answer:
In the question, the potential through which an electron is accelerated is given. The initial velocity is zero. You have to find the final velocity of the electron.
When an electron is accelerated by applying a potential, the energy of the electron is given by the expression \[{\text{E = eV }}...{\text{ }}...\left( 1 \right)\].
Here, E is the energy of the electron, e is the charge on the electron and V is the potential through which the electron is accelerated.
When an electron is moving with a speed u, its kinetic energy is given by the expression \[{\text{E = }}\dfrac{1}{2}{\text{m}}{{\text{u}}^2}{\text{ }}...{\text{ }}...\left( 2 \right)\].
Here, E is the kinetic energy, m is the mass of the electron and u is the velocity of the electron.
But the energies represented by two equations (1) and (2) are the same.
\[{\text{eV = }}\dfrac{1}{2}{\text{m}}{{\text{u}}^2} \\
{{\text{u}}^2} = \dfrac{{{\text{2eV}}}}{{\text{m}}} \\
{\text{u}} = \sqrt {\dfrac{{{\text{2eV}}}}{{\text{m}}}} \\\]
Substitute values in the above expression and calculate the final velocity of the electron.
\[{\text{u}} = \sqrt {\dfrac{{{\text{2eV}}}}{{\text{m}}}} \\
= \sqrt {\dfrac{{{\text{2}} \times {\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{ - 19}} \times {\text{1600}}}}{{9.1 \times {{10}^{ - 31}}}}} \\
= 2.37 \times {10^7}{\text{ m/s}} \\\]
Thus, the final velocity of an electron is \[2.37 \times {10^7}{\text{ m/s}}\].
Hence, the option A ) is the correct option.
Note: When an electric field is applied to the electron at rest, the electron is accelerated. The kinetic energy of the electron after acceleration is equal to the energy of the electron in presence of the applied electric field.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

