Find a point on x-axis which is equidistant from points (5, 4) and (-2, 3).
\[
{\text{A}}{\text{. }}\left( {2,0} \right) \\
{\text{B}}{\text{. }}\left( { - 2,0} \right) \\
{\text{C}}{\text{. }}\left( {3,0} \right) \\
{\text{D}}{\text{. }}\left( { - 3,0} \right) \\
\]
Answer
Verified
506.4k+ views
Hint: Calculate the individual distance from each of the given points to the point on x-axis, both these distances must be equal. Use the formula for distance between two points. Also, the Y-coordinate for any point which lies on x-axis is zero.
Complete step-by-step answer:
Given Data –
Points are (5, 4) and (-2, 3).
Let the point on x-axis be (x, 0).
The formula for calculating the distance (d) between two points $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ and $\left( {{{\text{x}}_{2,}}{{\text{y}}_2}} \right)$ respectively is
${\text{d = }}\sqrt {{{{\text{(}}{{\text{x}}_1}{\text{ - }}{{\text{x}}_2}{\text{)}}}^2} + {{({y_1} - {y_2})}^2}} $.
Let the distance from point (5, 4) to (x, 0) be D1.
\[{\text{D1 = }}\sqrt {{{(5 - x)}^2} + {{(4 - 0)}^2}} \] -> Equation 1.
Let the distance from point (-2, 3) to (x, 0) be D2.
${\text{D2 = }}\sqrt {{{( - 2 - x)}^2} + {{(3 - 0)}^2}} $ -> Equation 2.
Equidistant implies both the distances D1 and D2 are equal;
⟹ Equation 1 = Equation 2
⟹ $\sqrt {{{(5 - {\text{x)}}}^2} + {{(4 - 0)}^2}} = \sqrt {{{( - 2 - {\text{x)}}}^2} + {{(3 - 0)}^2}} $
Squaring on both sides
⟹ \[{\left( {{\text{5 - x}}} \right)^2} + {\left( 4 \right)^2} = {\left( { - 2 - {\text{x}}} \right)^2} + {\left( 3 \right)^2}\]
⟹ ${\text{25 + }}{{\text{x}}^2} - 10{\text{x + 16 = 4 + }}{{\text{x}}^2} + 4{\text{x + 9}}$
⟹ 28 = 14x
⟹ x = 2.
Hence the point is (2, 0) which is Option A.
Note –
In problems like this always find the distance from each of the given points respectively and then equate the distance equations obtained to determine the value of the required point.
Distance from (5, 4) – D1 and (-2, 3) – D2 are obtained and equated and solved in order to determine the point on x-axis which is (2, 0).
Complete step-by-step answer:
Given Data –
Points are (5, 4) and (-2, 3).
Let the point on x-axis be (x, 0).
The formula for calculating the distance (d) between two points $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ and $\left( {{{\text{x}}_{2,}}{{\text{y}}_2}} \right)$ respectively is
${\text{d = }}\sqrt {{{{\text{(}}{{\text{x}}_1}{\text{ - }}{{\text{x}}_2}{\text{)}}}^2} + {{({y_1} - {y_2})}^2}} $.
Let the distance from point (5, 4) to (x, 0) be D1.
\[{\text{D1 = }}\sqrt {{{(5 - x)}^2} + {{(4 - 0)}^2}} \] -> Equation 1.
Let the distance from point (-2, 3) to (x, 0) be D2.
${\text{D2 = }}\sqrt {{{( - 2 - x)}^2} + {{(3 - 0)}^2}} $ -> Equation 2.
Equidistant implies both the distances D1 and D2 are equal;
⟹ Equation 1 = Equation 2
⟹ $\sqrt {{{(5 - {\text{x)}}}^2} + {{(4 - 0)}^2}} = \sqrt {{{( - 2 - {\text{x)}}}^2} + {{(3 - 0)}^2}} $
Squaring on both sides
⟹ \[{\left( {{\text{5 - x}}} \right)^2} + {\left( 4 \right)^2} = {\left( { - 2 - {\text{x}}} \right)^2} + {\left( 3 \right)^2}\]
⟹ ${\text{25 + }}{{\text{x}}^2} - 10{\text{x + 16 = 4 + }}{{\text{x}}^2} + 4{\text{x + 9}}$
⟹ 28 = 14x
⟹ x = 2.
Hence the point is (2, 0) which is Option A.
Note –
In problems like this always find the distance from each of the given points respectively and then equate the distance equations obtained to determine the value of the required point.
Distance from (5, 4) – D1 and (-2, 3) – D2 are obtained and equated and solved in order to determine the point on x-axis which is (2, 0).
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE