Answer
Verified
430.2k+ views
Hint: We find the square root of the given complex number $-47+8\sqrt{-3}$. The square root is considered as the value of the variable $x$. Then we use the conjugate theorem to find the other root for the equation. We use the quadratic equation ${{x}^{2}}-\left( p+q \right)x+pq=0$ to find the required equation.
Complete step by step answer:
We need to find the quadratic equation whose one root is the square root of $-47+8\sqrt{-3}$.
So, if the variable is $x$, then the value of $x$ is square root of $-47+8\sqrt{-3}$.
We need to find the square root of $-47+8\sqrt{-3}$.
Here we have a complex number and we denote that as \[\sqrt{-1}=i\]. We have the relations for imaginary $i$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
So, the number becomes \[-47+8\sqrt{-3}=-47+8\sqrt{3}i\].
We express it in the form of identity form of ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$.
For our given expression $-47+8\sqrt{3}i$, we convert $-47$ for the form ${{a}^{2}}+{{b}^{2}}$ of ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$. Then we convert $8\sqrt{3}i$ for the form $2ab$ of ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$.
We break $-47$ as $-47=-48+1=48{{i}^{2}}+1$. We have the sum of two squares. We know $48=4\sqrt{3}$.
So, \[-47=48{{i}^{2}}+1={{\left( 4\sqrt{3}i \right)}^{2}}+{{1}^{2}}\]. Also, we have $8\sqrt{3}i=2\times 4\sqrt{3}i\times 1$.
For our identity ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$, we got \[a=4\sqrt{3}i,b=1\].
So, $-47+8\sqrt{-3}={{\left( 4\sqrt{3}i+1 \right)}^{2}}$.
We can express \[\sqrt{\left( -47+8\sqrt{-3} \right)}=1+4\sqrt{3}i\].
We know that in a quadratic equation the complex number always remains with its conjugate pair if the coefficients of the equation are real.
So, the required quadratic equation will have the roots as \[1+4\sqrt{3}i\] and its conjugate \[1-4\sqrt{3}i\].
We know that the quadratic equation with roots $p$ and $q$ will be ${{x}^{2}}-\left( p+q \right)x+pq=0$.
So, our required equation will be \[{{x}^{2}}-\left\{ \left( 1-4\sqrt{3}i \right)+\left( 1+4\sqrt{3}i \right) \right\}x+\left( 1-4\sqrt{3}i \right)\left( 1+4\sqrt{3}i \right)=0\].
Simplifying we get the equation as \[{{x}^{2}}-2x+49=0\].
Therefore, the quadratic equation whose one root is square root of $-47+8\sqrt{-3}$ is \[{{x}^{2}}-2x+49=0\].
Note:
We also use the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ for the multiplication of the roots. The equation ${{x}^{2}}-\left( p+q \right)x+pq=0$ can be broken into two parts where $\left( x-p \right)\left( x-q \right)=0$ giving two roots as $p$ and $q$.
Complete step by step answer:
We need to find the quadratic equation whose one root is the square root of $-47+8\sqrt{-3}$.
So, if the variable is $x$, then the value of $x$ is square root of $-47+8\sqrt{-3}$.
We need to find the square root of $-47+8\sqrt{-3}$.
Here we have a complex number and we denote that as \[\sqrt{-1}=i\]. We have the relations for imaginary $i$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
So, the number becomes \[-47+8\sqrt{-3}=-47+8\sqrt{3}i\].
We express it in the form of identity form of ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$.
For our given expression $-47+8\sqrt{3}i$, we convert $-47$ for the form ${{a}^{2}}+{{b}^{2}}$ of ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$. Then we convert $8\sqrt{3}i$ for the form $2ab$ of ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$.
We break $-47$ as $-47=-48+1=48{{i}^{2}}+1$. We have the sum of two squares. We know $48=4\sqrt{3}$.
So, \[-47=48{{i}^{2}}+1={{\left( 4\sqrt{3}i \right)}^{2}}+{{1}^{2}}\]. Also, we have $8\sqrt{3}i=2\times 4\sqrt{3}i\times 1$.
For our identity ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$, we got \[a=4\sqrt{3}i,b=1\].
So, $-47+8\sqrt{-3}={{\left( 4\sqrt{3}i+1 \right)}^{2}}$.
We can express \[\sqrt{\left( -47+8\sqrt{-3} \right)}=1+4\sqrt{3}i\].
We know that in a quadratic equation the complex number always remains with its conjugate pair if the coefficients of the equation are real.
So, the required quadratic equation will have the roots as \[1+4\sqrt{3}i\] and its conjugate \[1-4\sqrt{3}i\].
We know that the quadratic equation with roots $p$ and $q$ will be ${{x}^{2}}-\left( p+q \right)x+pq=0$.
So, our required equation will be \[{{x}^{2}}-\left\{ \left( 1-4\sqrt{3}i \right)+\left( 1+4\sqrt{3}i \right) \right\}x+\left( 1-4\sqrt{3}i \right)\left( 1+4\sqrt{3}i \right)=0\].
Simplifying we get the equation as \[{{x}^{2}}-2x+49=0\].
Therefore, the quadratic equation whose one root is square root of $-47+8\sqrt{-3}$ is \[{{x}^{2}}-2x+49=0\].
Note:
We also use the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ for the multiplication of the roots. The equation ${{x}^{2}}-\left( p+q \right)x+pq=0$ can be broken into two parts where $\left( x-p \right)\left( x-q \right)=0$ giving two roots as $p$ and $q$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers