Answer
Verified
392.2k+ views
Hint: Centre of the mass of the body is the point on which the whole mass is assumed to be concentrated. The concept of centre of mass is very important in solving mechanics problems. We can easily predict the trajectory of the motion of complex bodies. If the net force on the body is zero, then the center of mass of the body will not change its velocity, but it may be possible that some part of the body is undergoing complex rotational motion.
Formula used:
$\sum F_{net} = m_T a_{com}$
Complete answer:
The acceleration of centre of mass could be easily calculated using $\sum F_{net} = m_T a_{com}$, where $F_{net}$ is the net external force on the system and $m_T$ is the total mass of the system.
The net external force on the block of 2kg $= -10N + f$
$\implies -10 + \mu\times mg$
$\implies -10+0.1 \times 20 =-10+ 2$
$= -8N$
The net external force on the block of 10kg $= 12N - f$
$\implies 12 - \mu\times mg$
$\implies 12-0.2 \times 40 =12- 8$
$= 4N$
Now, the net external force on the system is $-8+4 = -4N$
Also, the total mass of the system is 2 kg + 4 kg = 6kg
Hence, $F_{net} = m_T a_{com}$
Thus $a_{com} = \dfrac{-4}{6} = -2/3ms^{-2}$
Hence the net acceleration of the centre of mass of the system is $-2/3\ ms^{-2}$.
Note:
Always note that the frictional force on a body is applied opposite to the direction of motion of the body. Here, one body is moving towards the left. Thus the direction of the force of friction is taken towards the right and the other is moving right, hence direction is taken towards left. In the final expression, acceleration is $-2/3\ ms^{-2}$. The negative sign shows that the acceleration is towards the left or the whole system’s centre of mass is accelerating towards the left.
Formula used:
$\sum F_{net} = m_T a_{com}$
Complete answer:
The acceleration of centre of mass could be easily calculated using $\sum F_{net} = m_T a_{com}$, where $F_{net}$ is the net external force on the system and $m_T$ is the total mass of the system.
The net external force on the block of 2kg $= -10N + f$
$\implies -10 + \mu\times mg$
$\implies -10+0.1 \times 20 =-10+ 2$
$= -8N$
The net external force on the block of 10kg $= 12N - f$
$\implies 12 - \mu\times mg$
$\implies 12-0.2 \times 40 =12- 8$
$= 4N$
Now, the net external force on the system is $-8+4 = -4N$
Also, the total mass of the system is 2 kg + 4 kg = 6kg
Hence, $F_{net} = m_T a_{com}$
Thus $a_{com} = \dfrac{-4}{6} = -2/3ms^{-2}$
Hence the net acceleration of the centre of mass of the system is $-2/3\ ms^{-2}$.
Note:
Always note that the frictional force on a body is applied opposite to the direction of motion of the body. Here, one body is moving towards the left. Thus the direction of the force of friction is taken towards the right and the other is moving right, hence direction is taken towards left. In the final expression, acceleration is $-2/3\ ms^{-2}$. The negative sign shows that the acceleration is towards the left or the whole system’s centre of mass is accelerating towards the left.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What was the Metternich system and how did it provide class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE